Approximation Theory：Discrete Least Squares

Outline

Math 636 －Mathematical Modeling
Lecture Notes－Least Squares

Joseph M．Mahaffy，〈jmahaffy＠mail．sdsu．edu〉

Department of Mathematics and Statistics Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego，CA 92182－7720
http://www-rohan.sdsu.edu/~jmahaffy

Fall 2014

Joseph M．Mahaffy，〈jmahaffy＠mail．sdsu．edu〉	Lecture Notes－Least Squares	－（1／29）		
Approximation Theory：Discrete Least Squares				
Discrete Least Squares				Introduction
:---				
Discrete Least Squares				

Sometimes we get a lot of data，many observations，and want to fit it to a simple model．

Low dimensional models（e．g．low degree polynomials）are easy to work with，and are quite well behaved（high degree polynomials can be quite oscillatory．）
All measurements are noisy，to some degree．Often，we want to use a large number of measurements in order to＂average out＂ random noise．

Approximation Theory looks at two problems：
［1］Given a data set，find the best fit for a model（i．e．in a class of functions，find the one that best represents the data．）
［2］Find a simpler model approximating a given function．
［2］Find a sion

Approximation Theory：Discrete Least Squares
－Introduction
－Discrete Least SquaresDiscrete Least Squares
－A Simple，Powerful Approach
Approximation Theory：Discrete Least Squares

Discrete Least Squares | Introduction |
| :--- |
| Discrete Least Squares |

Why a Low Dimensional Model？

$$
\left\{\begin{array}{l}
\mathrm{a}_{0}(n+1)+\mathrm{a}_{1} \sum_{i=0}^{n} x_{i}=\sum_{i=0}^{n} y_{i} \\
\mathrm{a}_{0} \sum_{i=0}^{n} x_{i}+\mathrm{a}_{1} \sum_{i=0}^{n} x_{i}^{2}=\sum_{i=0}^{n} x_{i} y_{i} .
\end{array}\right.
$$

Since everything except a_{0} and a_{1} is known, this is a 2 -by- 2 system of equations.

$$
\left[\begin{array}{cc}
(n+1) & \sum_{i=0}^{n} x_{i} \\
\sum_{i=0}^{n} x_{i} & \sum_{i=0}^{n} x_{i}^{2}
\end{array}\right]\left[\begin{array}{l}
\mathrm{a}_{0} \\
\mathrm{a}_{1}
\end{array}\right]=\left[\begin{array}{c}
\sum_{i=0}^{n} y_{i} \\
\sum_{i=0}^{n} x_{i} y_{i}
\end{array}\right] .
$$

Similarly for the quadratic polynomial $p_{2}(x)=a_{0}+a_{1} x+a_{2} x^{2}$, the normal equations are:

$$
\left\{\begin{array}{l}
\mathrm{a}_{0}(n+1)+\mathrm{a}_{1} \sum_{i=0}^{n} x_{i}+\mathrm{a}_{2} \sum_{i=0}^{n} x_{i}^{2}=\sum_{i=0}^{n} y_{i} \\
\mathrm{a}_{0} \sum_{i=0}^{n} x_{i}+\mathrm{a}_{1} \sum_{i=0}^{n} x_{i}^{2}+\mathrm{a}_{2} \sum_{i=0}^{n} x_{i}^{3}=\sum_{i=0}^{n} x_{i} y_{i} . \\
\mathrm{a}_{0} \sum_{i=0}^{n} x_{i}^{2}+\mathrm{a}_{1} \sum_{i=0}^{n} x_{i}^{3}+\mathbf{a}_{2} \sum_{i=0}^{n} x_{i}^{4}=\sum_{i=0}^{n} x_{i}^{2} y_{i} .
\end{array}\right.
$$

Note: Even though the model is quadratic, the resulting (normal) equations are linear. - The model is linear in its parameters, a_{0}, a_{1}, and a_{2}.

We rewrite the Normal Equations as：

$$
\left[\begin{array}{ccc}
(n+1) & \sum_{i=0}^{n} x_{i} & \sum_{i=0}^{n} x_{i}^{2} \\
\sum_{i=0}^{n} x_{i} & \sum_{i=0}^{n} x_{i}^{2} & \sum_{i=0}^{n} x_{i}^{3} \\
\sum_{i=0}^{n} x_{i}^{2} & \sum_{i=0}^{n} x_{i}^{3} & \sum_{i=0}^{n} x_{i}^{4}
\end{array}\right]\left[\begin{array}{c}
\mathrm{a}_{0} \\
\mathrm{a}_{1} \\
\mathrm{a}_{2}
\end{array}\right]=\left[\begin{array}{c}
\sum_{i=0}^{n} y_{i} \\
\sum_{i=0}^{n} x_{i} y_{i} . \\
\sum_{i=0}^{n} x_{i}^{2} y_{i} .
\end{array}\right] .
$$

It is not immediately obvious，but this expression can be written in the form $\mathbf{A}^{\mathrm{T}} \mathbf{A} \tilde{\mathbf{a}}=\mathbf{A}^{\mathrm{T}} \tilde{\mathbf{y}}$ ．Where the matrix A is very easy to write in terms of x_{i} ．［Jump Forward］．
Joseph M．Mahaffy，〈jmahaffy＠mail．sdsu．edu〉 Lecture Notes－Least Squares－（9／29）

Snowy Tree Cricket

Approximation Theory：Discrete Least Squares

Given the data set $(\tilde{\mathbf{x}}, \tilde{\mathbf{y}})$ ，where $\tilde{\mathbf{x}}=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}^{T}$ and $\tilde{\mathbf{y}}=\left\{y_{0}, y_{1}, \ldots, y_{n}\right\}^{T}$ ，we can quickly find the best polynomial fit for any specified polynomial degree！
Notation：Let $\tilde{\mathbf{x}}^{j}$ be the vector $\left\{x_{0}^{j}, x_{1}^{j}, \ldots, x_{n}^{j}\right\}^{T}$ ．
E．g．to compute the best fitting polynomial of degree 3， $p_{3}(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$ ，define：

$$
A=\left[\begin{array}{cccc}
\mid & \mid & \mid & \mid \\
\tilde{\mathbf{1}} & \tilde{\mathbf{x}} & \tilde{\mathbf{x}}^{2} & \tilde{\mathbf{x}}^{3} \\
\mid & \mid & \mid & \mid
\end{array}\right], \quad \text { and compute } \quad \tilde{\mathbf{a}}=\left(A^{T} A\right)^{-1}\left(A^{T} \tilde{\mathbf{y}}\right)
$$

See Numerical Analysis（Math 541）to solve this equation
This is solvable in MatLab（See polyfit）SDSO
Joseph M．Mahaffy，〈jmahaffy＠mail．sdsu．edu〉 Lecture Notes－Least Squares

Chirping Crickets and Temperature

－Folk method for finding temperature（Fahrenheit） Count the number of chirps in a minute and divide by 4，then add 40
－In 1898，A．E．Dolbear［3］noted that
＂crickets in a field［chirp］synchronously，keeping time as if led by the wand of a conductor＂
－He wrote down a formula in a scientific publication（first？）

$$
T=50+\frac{N-40}{4}
$$

[^0]－Mathematical models for chirping of snowy tree crickets， Oecanthulus fultoni，are Linear Models
－Data from C．A．Bessey and E．A．Bessey［2］（8 crickets） from Lincoln，Nebraska during August and September， 1897 （shown on next slide）
－The least squares best fit line to the data is
$$
T=60+\frac{N-92}{4.7}
$$
［2］C．A．Bessey and E．A．Bessey，Further notes on thermometer crickets，American Naturalist （1898）32，263－264

Model

Joseph M．Mahaffy，〈jmahaffy＠mail．sdsu．edu〉 Lecture Notes－Least Squares

How well does the line fitting the Bessey \＆Bessey data agree with the Dolbear model given above？
－Graph shows Linear model fits the data well
－Data predominantly below Folk／Dolbear model
－Possible discrepancies
－Different cricket species
－Regional variation
－Folk only an approximation
－Graph shows only a few ${ }^{\circ} \mathrm{F}$ difference between models

When can this model be applied from a practical perspective？
－Biological thermometer has limited use
－Snowy tree crickets only chirp for a couple months of the year and mostly at night
－Temperature needs to be above $50^{\circ} \mathrm{F}$

Over what range of temperatures is this model valid？
－Biologically，observations are mostly between $50^{\circ} \mathrm{F}$ and $85^{\circ} \mathrm{F}$
－Thus，limited range of temperatures，so limited range on the Linear Model
－Range of Linear functions affects its Domain
－From the graph，Domain is approximately 50－200 Chirps／min

How accurate is the model and how might the accuracy be improved？
－Data closely surrounds Bessey Model－No more than about $3^{\circ} \mathrm{F}$ away fom line
－Dolbear Model is fairly close though not as accurate－ Sufficient for rapid temperature estimate
－Observe that the temperature data trends lower at higher chirp rates－compared against linear model
－Better fit with Quadratic function－Is this really significant？

Joseph M．Mahaffy，〈jmahaffy＠mail．sdsu．edu〉
 Lecture Notes－Least Squares

```
Discrete Least Squares Application：Cricket Thermometer
```

Cricket Linear Model
If you compute the matrix which you never should！

$$
A_{1}^{T} A_{1}=\left(\begin{array}{cc}
52 & 7447 \\
7447 & 1133259
\end{array}\right)
$$

it has eigenvalues

$$
\lambda_{1}=3.0633 \quad \text { and } \quad \lambda_{2}=1,133,308,
$$

which gives the condition number

$$
\operatorname{cond}\left(A_{1}^{T} A_{1}\right)=3.6996 \times 10^{5} .
$$

Whereas

$$
\operatorname{cond}\left(A_{1}\right)=608.2462
$$

In Matlab

$$
\mathrm{A}_{1} \backslash \mathrm{~T}
$$

gives the parameters for best linear model

$$
T_{1}(N)=0.2155 N+39.7441
$$

Similarly，the matrix

$$
A_{2}^{T} A_{2}=\left(\begin{array}{ccc}
52 & 7447 & 1133259 \\
7447 & 1133259 & 1.8113 \times 10^{8} \\
1133259 & 1.8113 \times 10^{8} & 3.0084 \times 10^{1} 0
\end{array}\right)
$$

has eigenvalues

$$
\lambda_{1}=0.1957, \quad \lambda_{2}=42,706, \quad \lambda_{3}=3.00853 \times 10^{10}
$$

which gives the condition number

$$
\operatorname{cond}\left(A_{2}^{T} A_{2}\right)=1.5371 \times 10^{11} .
$$

Whereas，

$$
\operatorname{cond}\left(A_{2}\right)=3.9206 \times 10^{5}
$$

and

$$
\mathrm{A}_{2} \backslash \mathrm{~T},
$$

gives the parameters for best quadratic model

$$
T_{2}(N)=-0.00064076 N^{2}+0.39625 N+27.8489 .
$$

Quadratic Fit

Cubic Fit
Joseph M．Mahaffy，〈jmahaffy＠mail．sdsu．edu〉 Lecture Notes－Least Squares
Discrete Least Squares

Application：Cricket Thermometer

Quartic Fit
5050
Joseph M．Mahaffy，〈jmahaffy＠mail．sdsu．edu〉 Lecture Notes－Least Squares

```
Discrete Least Squares Application: Cricket Thermometer
```

Best Cricket Model－Analysis

Bayesian Information Criterion

Let n be the number of data points，$S S E$ be the sum of square errors，and let k be the number of parameters in the model．

$$
B I C=n \ln (S S E / n)+k \ln (n) .
$$

Akaike Information Criterion

$$
A I C=2 k+n(\ln (2 \pi S S E / n)+1) .
$$

The table below shows the by the Akaike information criterion that we should take a quadratic model, while using a Bayesian Information Criterion we should use a cubic model.

	Linear	Quadratic	Cubic	Quartic
SSE	108.8	79.08	78.74	$\mathbf{7 8 . 7 0}$
$B I C$	46.3	33.65	33.43	37.35
$A I C$	189.97	$\mathbf{1 7 5 . 3 7}$	177.14	179.12

Returning to the original statement, we do fairly well by using the folk formula, despite the rest of this analysis!

[^0]: ［3］A．E．Dolbear，The cricket as a thermometer，American Naturalist（1897）31，970－971

