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Discrete Least Squares

Introduction
Discrete Least Squares

Introduction: Matching a Few Parameters to a Lot of Data.

Sometimes we get a lot of data, many observations, and
want to fit it to a simple model.
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Discrete Least Squares

Introduction
Discrete Least Squares

Why a Low Dimensional Model?

Low dimensional models (e.g. low degree polynomials) are easy
to work with, and are quite well behaved (high degree
polynomials can be quite oscillatory.)

All measurements are noisy, to some degree. Often, we want to
use a large number of measurements in order to “average out”
random noise.

Approximation Theory looks at two problems:

[1] Given a data set, find the best fit for a model (i.e. in a class
of functions, find the one that best represents the data.)

[2] Find a simpler model approximating a given function.
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Introduction
Discrete Least Squares

Discrete Least Squares: Linear Approximation.

The form of Least Squares you are most likely to see: Find the
Linear Function, p1(x) = a0 + a1x, that best fits the data.
The error E(a0, a1) we need to minimize is:

E(a0, a1) =
n∑

i=0

[(a0 + a1xi)− yi]
2 .

The first partial derivatives with respect to a0 and a1 better be
zero at the minimum:

∂

∂a0
E(a0, a1) = 2

n∑

i=0

[(a0 + a1xi)− yi] = 0

∂

∂a1
E(a0, a1) = 2

n∑

i=0

xi [(a0 + a1xi)− yi] = 0.

We “massage” these expressions to get the Normal
Equations...
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Introduction
Discrete Least Squares

Linear Approximation: The Normal Equations p1(x)





a0(n+ 1) + a1

n∑

i=0

xi =
n∑

i=0

yi

a0

n∑

i=0

xi + a1

n∑

i=0

x2i =
n∑

i=0

xiyi.

Since everything except a0 and a1 is known, this is a 2-by-2
system of equations.




(n+ 1)
n∑

i=0

xi

n∑

i=0

xi

n∑

i=0

x2i




[
a0
a1

]
=




n∑

i=0

yi

n∑

i=0

xiyi



.
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Introduction
Discrete Least Squares

Quadratic Model, p2(x)

For the quadratic polynomial p2(x) = a0 + a1x+ a2x
2, the error

is given by

E(a0, a1, a2) =
n∑

i=0

[
a0 + a1xi + a2x

2
i − yi

]2

At the minimum (best model) we must have

∂

∂a0
E(a0, a1, a2) = 2

n∑

i=0

[
(a0 + a1xi + a2x

2
i )− yi

]
= 0

∂

∂a1
E(a0, a1, a2) = 2

n∑

i=0

xi
[
(a0 + a1xi + a2x

2
i )− yi

]
= 0

∂

∂a2
E(a0, a1, a2) = 2

n∑

i=0

x2i
[
(a0 + a1xi + a2x

2
i )− yi

]
= 0.

Joseph M. Mahaffy, 〈jmahaffy@mail.sdsu.edu〉 Lecture Notes – Least Squares — (7/29)

Approximation Theory: Discrete Least Squares
Discrete Least Squares

Introduction
Discrete Least Squares

Quadratic Model: The Normal Equations p2(x)

Similarly for the quadratic polynomial p2(x) = a0 + a1x+ a2x
2,

the normal equations are:





a0(n+ 1) + a1

n∑

i=0

xi + a2

n∑

i=0

x2i =
n∑

i=0

yi

a0

n∑

i=0

xi + a1

n∑

i=0

x2i + a2

n∑

i=0

x3i =
n∑

i=0

xiyi.

a0

n∑

i=0

x2i + a1

n∑

i=0

x3i + a2

n∑

i=0

x4i =
n∑

i=0

x2i yi.

Note: Even though the model is quadratic, the resulting (nor-
mal) equations are linear. — The model is linear in its
parameters, a0, a1, and a2.
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The Normal Equations — As Matrix Equations.

We rewrite the Normal Equations as:




(n+ 1)
n∑

i=0

xi

n∑

i=0

x2i

n∑

i=0

xi

n∑

i=0

x2i

n∑

i=0

x3i

n∑

i=0

x2i

n∑

i=0

x3i

n∑

i=0

x4i







a0
a1
a2


 =




n∑

i=0

yi

n∑

i=0

xiyi.

n∑

i=0

x2i yi.




.

It is not immediately obvious, but this expression can be
written in the form ATAã = ATỹ. Where the matrix A is very
easy to write in terms of xi. [Jump Forward].
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A Simple, Powerful Approach

Discrete Least Squares: A Simple, Powerful Method.

Given the data set (x̃, ỹ), where x̃ = {x0, x1, . . . , xn}T and
ỹ = {y0, y1, . . . , yn}T , we can quickly find the best polynomial
fit for any specified polynomial degree!

Notation: Let x̃j be the vector {xj0, xj1, . . . , xjn}T .
E.g. to compute the best fitting polynomial of degree 3,

p3(x) = a0 + a1x+ a2x
2 + a3x

3, define:

A =




| | | || | | |
1̃ x̃ x̃2 x̃3

| | | || | | |


 , and compute ã = (ATA)−1(AT ỹ).

See Numerical Analysis (Math 541) to solve this
equation
This is solvable in MatLab (See polyfit)
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Discrete Least Squares Application: Cricket Thermometer

Snowy Tree Cricket
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Discrete Least Squares Application: Cricket Thermometer

Chirping Crickets and Temperature

Folk method for finding temperature (Fahrenheit)
Count the number of chirps in a minute and divide
by 4, then add 40

In 1898, A. E. Dolbear [3] noted that
“crickets in a field [chirp] synchronously, keeping
time as if led by the wand of a conductor”

He wrote down a formula in a scientific publication (first?)

T = 50 +
N − 40

4

[3] A. E. Dolbear, The cricket as a thermometer, American Naturalist (1897) 31, 970-971
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Discrete Least Squares Application: Cricket Thermometer

Data Fitting Linear Model

Mathematical models for chirping of snowy tree crickets,
Oecanthulus fultoni, are Linear Models

Data from C. A. Bessey and E. A. Bessey [2] (8 crickets)
from Lincoln, Nebraska during August and September,
1897 (shown on next slide)

The least squares best fit line to the data is

T = 60 +
N − 92

4.7

[2] C. A. Bessey and E. A. Bessey, Further notes on thermometer crickets, American Naturalist

(1898) 32, 263-264
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Discrete Least Squares Application: Cricket Thermometer

Bessey Data and Linear Models
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Bessey:  T = 0.21 N + 40.4
Dolbear: T = 0.25 N + 40
Bessey data

Model
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Discrete Least Squares Application: Cricket Thermometer

Biological Questions – Cricket Model 1

How well does the line fitting the Bessey & Bessey data agree
with the Dolbear model given above?

Graph shows Linear model fits the data well

Data predominantly below Folk/Dolbear model

Possible discrepancies

Different cricket species
Regional variation
Folk only an approximation

Graph shows only a few ◦F difference between models
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Discrete Least Squares Application: Cricket Thermometer

Biological Questions – Cricket Model 2

When can this model be applied from a practical perspective?

Biological thermometer has limited use

Snowy tree crickets only chirp for a couple months of the
year and mostly at night

Temperature needs to be above 50◦F
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Discrete Least Squares Application: Cricket Thermometer

Mathematical Questions – Cricket Model 1

Over what range of temperatures is this model valid?

Biologically, observations are mostly between 50◦F and
85◦F

Thus, limited range of temperatures, so limited range on
the Linear Model

Range of Linear functions affects its Domain

From the graph, Domain is approximately 50–200
Chirps/min
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Discrete Least Squares Application: Cricket Thermometer

Mathematical Questions – Cricket Model 2

How accurate is the model and how might the accuracy be
improved?

Data closely surrounds Bessey Model – No more than
about 3◦F away fom line

Dolbear Model is fairly close though not as accurate –
Sufficient for rapid temperature estimate

Observe that the temperature data trends lower at higher
chirp rates – compared against linear model

Better fit with Quadratic function – Is this really
significant?
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Discrete Least Squares Application: Cricket Thermometer

Cricket Data Analysis

C. A. Bessey and E. A. Bessey collected data on eight different
crickets that they observed in Lincoln, Nebraska during August
and September, 1897. The number of chirps/min was N and
the temperature was T .

Create matrices

A1 =




1 N1

1 N2
...

...


 A2 =




1 N1 N2
1

1 N2 N2
2

...
...

...




A3 =




1 N1 N2
1 N3

1

1 N2 N2
2 N3

2
...

...
...

...


 A4 =




1 N1 N2
1 N3

1 N4
1

1 N2 N2
2 N3

2 N4
2

...
...

...
...



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Discrete Least Squares Application: Cricket Thermometer

Cricket Linear Model

If you compute the matrix which you never should!

AT
1 A1 =

(
52 7447

7447 1133259

)
,

it has eigenvalues

λ1 = 3.0633 and λ2 = 1, 133, 308,

which gives the condition number

cond(AT
1 A1) = 3.6996× 105.

Whereas
cond(A1) = 608.2462.

In Matlab
A1\T

gives the parameters for best linear model

T1(N) = 0.2155N + 39.7441.
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Discrete Least Squares Application: Cricket Thermometer

Polynomial Fits to the Data: Linear

Linear Fit
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Discrete Least Squares Application: Cricket Thermometer

Cricket Quadratic Model

Similarly, the matrix

AT
2 A2 =




52 7447 1133259
7447 1133259 1.8113× 108

1133259 1.8113× 108 3.0084× 1010


 ,

has eigenvalues

λ1 = 0.1957, λ2 = 42, 706, λ3 = 3.00853× 1010

which gives the condition number

cond(AT
2 A2) = 1.5371× 1011.

Whereas,
cond(A2) = 3.9206× 105,

and
A2\T,

gives the parameters for best quadratic model

T2(N) = −0.00064076N2 + 0.39625N + 27.8489.
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Discrete Least Squares Application: Cricket Thermometer

Polynomial Fits to the Data: Quadratic

Quadratic Fit
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Discrete Least Squares Application: Cricket Thermometer

Cricket Cubic and Quartic Models

The condition numbers for the cubic and quartic rapidly get larger
with

cond(AT
3 A3) = 6.3648× 1016 and cond(AT

4 A4) = 1.1218× 1023

These last two condition numbers suggest that any coefficients
obtained are highly suspect.

However, if done right, we are “only” subject to the conditon numbers

cond(A3) = 2.522× 108, cond(A4) = 1.738× 1011.

The best cubic and quartic models are given by

T3(N) = 0.0000018977N3 − 0.001445N2 + 0.50540N + 23.138

T4(N) = −0.00000001765N4 + 0.00001190N3 − 0.003504N2

= +0.6876N + 17.314

Joseph M. Mahaffy, 〈jmahaffy@mail.sdsu.edu〉 Lecture Notes – Least Squares — (24/29)



Discrete Least Squares Application: Cricket Thermometer

Polynomial Fits to the Data: Cubic

Cubic Fit
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Discrete Least Squares Application: Cricket Thermometer

Polynomial Fits to the Data: Quartic

Quartic Fit
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Discrete Least Squares Application: Cricket Thermometer

Best Cricket Model

So how does one select the best model?

Visually, one can see that the linear model does a very good job,
and one only obtains a slight improvement with a quadratic. Is
it worth the added complication for the slight improvement.

It is clear that the sum of square errors (SSE) will improve as
the number of parameters increase.

From statistics, it is hotly debated how much penalty one
should pay for adding parameters.
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Discrete Least Squares Application: Cricket Thermometer

Best Cricket Model - Analysis

Bayesian Information Criterion

Let n be the number of data points, SSE be the sum of square
errors, and let k be the number of parameters in the model.

BIC = n ln(SSE/n) + k ln(n).

Akaike Information Criterion

AIC = 2k + n(ln(2πSSE/n) + 1).
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Discrete Least Squares Application: Cricket Thermometer

Best Cricket Model - Analysis Continued

The table below shows the by the Akaike information criterion
that we should take a quadratic model, while using a Bayesian
Information Criterion we should use a cubic model.

Linear Quadratic Cubic Quartic

SSE 108.8 79.08 78.74 78.70

BIC 46.3 33.65 33.43 37.35

AIC 189.97 175.37 177.14 179.12

Returning to the original statement, we do fairly well by using
the folk formula, despite the rest of this analysis!
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