Approximation Theory: Discrete Least Squares Discrete Least Squares	Approximation Theory: Discrete Least Squares Discrete Least Squares		
	Outline		
Math 636 – Mathematical Modeling Lecture Notes – Least Squares			
Joseph M. Mahaffy, $\langle jmahaffy@mail.sdsu.edu \rangle$	 Approximation Theory: Discrete Least Squares Introduction Discrete Least Squares 		
Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego, CA 92182-7720	 Discrete Least Squares A Simple, Powerful Approach 		
http://www-rohan.sdsu.edu/~jmahaffy Fall 2014			
Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu) Lecture Notes - Least Squares - (1/29)	Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu) Lecture Notes - Least Squares - (2/29)		
Approximation Theory: Discrete Least Squares Discrete Least Squares Discrete Least Squares	Approximation Theory: Discrete Least Squares Discrete Least Squares		
Introduction: Matching a Few Parameters to a Lot of Data.	Why a Low Dimensional Model?		
Sometimes we get a lot of data, <i>many observations</i> , and want to fit it to a simple model. $\begin{bmatrix} 8 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	Low dimensional models (<i>e.g.</i> low degree polynomials) are easy to work with , and are quite well behaved (high degree polynomials can be quite oscillatory.)		
	All measurements are noisy , to some degree. Often, we want to use a large number of measurements in order to "average out" random noise.		
	Approximation Theory looks at two problems:		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	 [1] Given a data set, find the best fit for a model (<i>i.e.</i> in a class of functions, find the one that best represents the data.) [2] Find a simpler model approximating a given function 		
Linear Best Fit Quadratic Best Fit			
PDF-IIIR: <u>code</u> .	Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu) Lecture Notes - Least Squares		

Approximation Theory: Discrete Least Squares Discrete Least Squares Discrete Least Squares

Discrete Least Squares: Linear Approximation.

The form of Least Squares you are most likely to see: Find the Linear Function, $p_1(x) = a_0 + a_1x$, that best fits the data. The error $E(a_0, a_1)$ we need to minimize is:

$$E(a_0, a_1) = \sum_{i=0}^{n} \left[(a_0 + a_1 x_i) - y_i \right]^2.$$

The first partial derivatives with respect to a_0 and a_1 better be zero at the minimum:

$$\frac{\partial}{\partial a_0} E(a_0, a_1) = 2 \sum_{i=0}^n \left[(a_0 + a_1 x_i) - y_i \right] = 0$$

$$\frac{\partial}{\partial a_1} E(a_0, a_1) = 2 \sum_{i=0}^n x_i \left[(a_0 + a_1 x_i) - y_i \right] = 0.$$

We "massage" these expressions to get the **Normal Equations**...

${f Joseph~M.~Mahaffy},~{\tt (jmahaffy@mail.sdsu.edu}$	Lecture Notes – Least Squares	-(5/29)
Approximation Theory: Discrete Least Squares Discrete Least Squares	Introduction Discrete Least Squares	

Quadratic Model, $p_2(x)$

For the quadratic polynomial $p_2(x) = a_0 + a_1 x + a_2 x^2$, the error is given by

$$E(a_0, a_1, a_2) = \sum_{i=0}^{n} \left[a_0 + a_1 x_i + a_2 x_i^2 - y_i \right]^2$$

At the minimum (best model) we must have

$$\frac{\partial}{\partial a_0} E(a_0, a_1, a_2) = 2 \sum_{i=0}^n \left[(a_0 + a_1 x_i + a_2 x_i^2) - y_i \right] = 0$$

$$\frac{\partial}{\partial a_1} E(a_0, a_1, a_2) = 2 \sum_{i=0}^n x_i \left[(a_0 + a_1 x_i + a_2 x_i^2) - y_i \right] = 0$$

$$\frac{\partial}{\partial a_2} E(a_0, a_1, a_2) = 2 \sum_{i=0}^n x_i^2 \left[(a_0 + a_1 x_i + a_2 x_i^2) - y_i \right] = 0.$$

Linear Approximation: The Normal Equations

$$\begin{cases} \mathbf{a_0}(n+1) + \mathbf{a_1} \sum_{i=0}^n x_i = \sum_{i=0}^n y_i \\ \mathbf{a_0} \sum_{i=0}^n x_i + \mathbf{a_1} \sum_{i=0}^n x_i^2 = \sum_{i=0}^n x_i y_i. \end{cases}$$

Since everything except a_0 and a_1 is known, this is a 2-by-2 system of equations.

$\left[\begin{array}{cc} (n+1) & \sum_{i=0}^{n} x_i \\ \sum_{i=0}^{n} x_i & \sum_{i=0}^{n} x_i^2 \end{array}\right] \left[$	$ \begin{bmatrix} \mathbf{a_0} \\ \mathbf{a_1} \end{bmatrix} = \begin{bmatrix} \sum_{i=0}^n y_i \\ \sum_{i=0}^n x_i y_i \end{bmatrix}. $	5050
$\textbf{Joseph M. Mahaffy}, \; \texttt{(jmahaffy@mail.sdsu.edu)}$	Lecture Notes – Least Squares	— (6/29)
proximation Theory: Discrete Least Squares Discrete Least Squares	Introduction Discrete Least Squares	
Quadratic Model: The Normal Equ	lations	$p_2(x)$

Similarly for the quadratic polynomial $p_2(x) = a_0 + a_1x + a_2x^2$, the normal equations are:

$$\begin{cases} \mathbf{a_0}(n+1) + \mathbf{a_1} \sum_{i=0}^n x_i + \mathbf{a_2} \sum_{i=0}^n x_i^2 = \sum_{i=0}^n y_i \\ \mathbf{a_0} \sum_{i=0}^n x_i + \mathbf{a_1} \sum_{i=0}^n x_i^2 + \mathbf{a_2} \sum_{i=0}^n x_i^3 = \sum_{i=0}^n x_i y_i. \\ \mathbf{a_0} \sum_{i=0}^n x_i^2 + \mathbf{a_1} \sum_{i=0}^n x_i^3 + \mathbf{a_2} \sum_{i=0}^n x_i^4 = \sum_{i=0}^n x_i^2 y_i. \end{cases}$$

Note: Even though the model is quadratic, the resulting (normal) equations are **linear**. — The model is linear in its parameters, a_0 , a_1 , and a_2 .

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu) Lecture Notes - Least Squares

(7/29)

- (8/29)

Approximation Theory: Discrete Least Squares Discrete Least Squares Discrete Least Squares	Approximation Theory: Discrete Least Squares Discrete Least Squares A Simple, Powerful Approach
The Normal Equations — As Matrix Equations.	Discrete Least Squares: A Simple, Powerful Method.
We rewrite the Normal Equations as: $ \begin{bmatrix} \begin{pmatrix} (n+1) & \sum_{i=0}^{n} x_i & \sum_{i=0}^{n} x_i^2 \\ \sum_{i=0}^{n} x_i & \sum_{i=0}^{n} x_i^2 & \sum_{i=0}^{n} x_i^3 \\ \sum_{i=0}^{n} x_i^2 & \sum_{i=0}^{n} x_i^3 & \sum_{i=0}^{n} x_i^4 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} \sum_{i=0}^{n} y_i \\ \sum_{i=0}^{n} x_i y_i \\ \sum_{i=0}^{n} x_i^2 y_i \\ \sum_{i=0}^{n} x_i^2 y_i \end{bmatrix} $ It is not immediately obvious, but this expression can be written in the form $\mathbf{A}^{T} \mathbf{A} \tilde{\mathbf{a}} = \mathbf{A}^{T} \tilde{\mathbf{y}}$. Where the matrix A is very easy to write in terms of x_i . Jump Forward.	Given the data set $(\tilde{\mathbf{x}}, \tilde{\mathbf{y}})$, where $\tilde{\mathbf{x}} = \{x_0, x_1, \dots, x_n\}^T$ and $\tilde{\mathbf{y}} = \{y_0, y_1, \dots, y_n\}^T$, we can quickly find the best polynomial fit for any specified polynomial degree! Notation: Let $\tilde{\mathbf{x}}^j$ be the vector $\{x_0^j, x_1^j, \dots, x_n^j\}^T$. <i>E.g.</i> to compute the best fitting polynomial of degree 3, $p_3(x) = a_0 + a_1x + a_2x^2 + a_3x^3$, define: $A = \begin{bmatrix} \begin{vmatrix} & & & & \\ 1 & \tilde{\mathbf{x}} & \tilde{\mathbf{x}}^2 & \tilde{\mathbf{x}}^3 \\ & & & & \end{vmatrix}, \text{ and compute } \tilde{\mathbf{a}} = (A^T A)^{-1} (A^T \tilde{\mathbf{y}}).$ See Numerical Analysis (Math 541) to solve this equation This is solvable in MatLab (See polyfit)
Discrete Least Squares Application: Cricket Thermometer	Discrete Least Squares Application: Cricket Thermometer
Snowy Tree Cricket	Chirping Crickets and Temperature
	 Folk method for finding temperature (Fahrenheit) Count the number of chirps in a minute and divide by 4, then add 40 In 1898, A. E. Dolbear [3] noted that "crickets in a field [chirp] synchronously, keeping time as if led by the wand of a conductor" He wrote down a formula in a scientific publication (first?) $T = 50 + \frac{N-40}{4}$ [3] A. E. Dolbear, The cricket as a thermometer, American Naturalist (1897) 31, 970-971

Discrete Least Squares Applicat

Bessey Data and Linear Models

Data Fitting Linear Model

- Mathematical models for chirping of snowy tree crickets, *Oecanthulus fultoni*, are **Linear Models**
- Data from C. A. Bessey and E. A. Bessey [2] (8 crickets) from Lincoln, Nebraska during August and September, 1897 (shown on next slide)
- The least squares best fit line to the data is

$$T = 60 + \frac{N - 92}{4.7}$$

[2] C. A. Bessey and E. A. Bessey, Further notes on thermometer crickets, American Naturalist (1898) 32, 263-264

Bessey: T = 0.21 N + 40.4 90 Dolbear: T = 0.25 N + 40 Bessey data 0 Temperature (^oF) 80 70 60 160 100 120 140 180 200 80 Chirps per minute (N)

Model

SUSU	5050
Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu) Lecture Notes - Least Squares - (13/29)	Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu) Lecture Notes - Least Squares (14/29)
Discrete Least Squares Application: Cricket Thermometer	Discrete Least Squares Application: Cricket Thermometer
Biological Questions – Cricket Model 1	Biological Questions – Cricket Model 2
 How well does the line fitting the Bessey & Bessey data agree with the Dolbear model given above? Graph shows Linear model fits the data well Data predominantly below Folk/Dolbear model Possible discrepancies Different cricket species Regional variation Folk only an approximation Graph shows only a few °F difference between models 	 When can this model be applied from a practical perspective? Biological thermometer has limited use Snowy tree crickets only chirp for a couple months of the year and mostly at night Temperature needs to be above 50°F

(15/29)

(16/29)

hematical Questions – Cricket Model 2
 w accurate is the model and how might the accuracy be aproved? Data closely surrounds Bessey Model – No more than about 3°F away fom line Dolbear Model is fairly close though not as accurate – Sufficient for rapid temperature estimate Observe that the temperature data trends lower at higher chirp rates – compared against linear model Better fit with Quadratic function – Is this really significant?
ph M. Mahaffy, (jmahaffy@mail.sdsu.edu) Lecture Notes - Least Squares - (18/29)
Discrete Least Squares Application: Cricket Thermometer
et Linear Model
you compute the matrix which you never should! $A_1^T A_1 = \begin{pmatrix} 52 & 7447\\ 7447 & 1133259 \end{pmatrix},$ has eigenvalues
$\lambda_1 = 3.0633$ and $\lambda_2 = 1, 133, 308,$
hich gives the condition number $cond(A_1^TA_1) = 3.6996 \times 10^5.$
$\operatorname{cond}(A_1) = 608.2462.$ Matlah

Polynomial Fits to the Data: Linear

Discrete Least Squares Ap

Application: Cricket Thermometer

Cricket Quadratic Model

Similarly, the matrix

$$A_2^T A_2 = \begin{pmatrix} 52 & 7447 & 1133259\\ 7447 & 1133259 & 1.8113 \times 10^8\\ 1133259 & 1.8113 \times 10^8 & 3.0084 \times 10^{10} \end{pmatrix}$$

has eigenvalues

$$\lambda_1 = 0.1957, \quad \lambda_2 = 42,706, \quad \lambda_3 = 3.00853 \times 10^{10}$$

which gives the condition number

$$cond(A_2^T A_2) = 1.5371 \times 10^{11}.$$

Whereas,

$$cond(A_2) = 3.9206 \times 10^5,$$

and

5050

(23/29)

$$A_2 \setminus T$$
,

gives the parameters for best quadratic model

$$T_2(N) = -0.00064076 N^2 + 0.39625 N + 27.8489.$$

Joseph M. Mahaffy, (jmahaffy@mail.sdsu.edu) Lecture Notes - Least Squares - (22/29)

Discrete Least Squares

Application: Cricket Thermometer

Cricket Cubic and Quartic Models

The condition numbers for the cubic and quartic rapidly get larger with

$$cond(A_3^T A_3) = 6.3648 \times 10^{16}$$
 and $cond(A_4^T A_4) = 1.1218 \times 10^{23}$

These last two condition numbers suggest that any coefficients obtained are highly suspect.

However, if done right, we are "only" subject to the conditon numbers

$$\operatorname{cond}(A_3) = 2.522 \times 10^8$$
, $\operatorname{cond}(A_4) = 1.738 \times 10^{11}$.

The best cubic and quartic models are given by

$$T_3(N) = 0.0000018977 N^3 - 0.001445 N^2 + 0.50540 N + 23.138$$

$$T_4(N) = -0.00000001765 N^4 + 0.00001190 N^3 - 0.003504 N^2$$

$$= +0.6876 N + 17.314$$

(24/29)

SDSU

Discrete Least Squares

Polynomial Fits to the Data: Quartic

Quartic Fit

5051

SDSU Joseph M. Mahaffy, $\langle jmahaffy@mail.sdsu.edu \rangle$ Joseph M. Mahaffy, $\langle jmahaffy@mail.sdsu.edu \rangle$ Lecture Notes – Least Squares (25/29)Lecture Notes – Least Squares (26/29)**Discrete Least Squares** Application: Cricket Thermometer **Discrete Least Squares Application:** Cricket Thermometer Best Cricket Model Best Cricket Model - Analysis

So how does one select the best model?

Visually, one can see that the linear model does a very good job, and one only obtains a slight improvement with a quadratic. Is it worth the added complication for the slight improvement.

It is clear that the sum of square errors (SSE) will improve as the number of parameters increase.

From statistics, it is hotly debated how much penalty one should pay for adding parameters.

Bayesian Information Criterion

Let n be the number of data points, SSE be the sum of square errors, and let k be the number of parameters in the model.

 $BIC = n\ln(SSE/n) + k\ln(n).$

Akaike Information Criterion

$$AIC = 2k + n(\ln(2\pi SSE/n) + 1).$$

(27/29)

Best Cricket Model - Analysis Continued

The table below shows the by the Akaike information criterion that we should take a quadratic model, while using a Bayesian Information Criterion we should use a cubic model.

	Linear	Quadratic	Cubic	Quartic
SSE	108.8	79.08	78.74	78.70
BIC	46.3	33.65	33.43	37.35
AIC	189.97	175.37	177.14	179.12

Returning to the original statement, we do fairly well by using the folk formula, despite the rest of this analysis!

		5050
$\textbf{Joseph M. Mahaffy}, \ \langle \texttt{jmahaffy@mail.sdsu.edu} \rangle$	Lecture Notes – Least Squares	-(29/29)