1. Differentiation gives:
a. Consider

$$
f_{1}(x)=x^{3}+8 e^{-2 x}
$$

The derivative uses the power and exponential rules, so

$$
f_{1}^{\prime}(x)=3 x^{2}+8\left(-2 e^{-2 x}\right)=3 x^{2}-16 e^{-2 x}
$$

b. Consider

$$
f_{2}(x)=4 \sin (2 x+1)
$$

The derivative uses rules for differentiation of the sine function, so

$$
f_{2}^{\prime}(x)=4(2 \cos (2 x+1))=8 \cos (2 x+1)
$$

c. Consider

$$
f_{3}(x)=\frac{1}{4 x^{2}}+7=\frac{1}{4} x^{-2}+7
$$

The derivative uses the power rule, so

$$
f_{3}^{\prime}(x)=\frac{-2}{4} x^{-3}+0=-\frac{1}{2 x^{3}}
$$

d. Consider

$$
f_{4}(x)=2 \ln \left(x^{2}+5\right)
$$

The derivative uses rules for differentiation of the logarithm function, so

$$
f_{4}^{\prime}(x)=2\left(\frac{2 x}{x^{2}+5}\right)=\frac{4 x}{x^{2}+5}
$$

e. Consider

$$
f_{5}(x)=x^{2} \cos (3 x)
$$

The derivative uses the product rule, so

$$
f_{5}^{\prime}(x)=x^{2}(-3 \sin (3 x))+(2 x) \cos (3 x)=-3 x^{2} \sin (3 x)+2 x \cos (3 x)
$$

f. Consider

$$
f_{6}(x)=4 e^{x^{3}+1}
$$

The derivative uses the chain rule, so

$$
f_{6}^{\prime}(x)=4 e^{x^{3}+1}\left(3 x^{2}\right)=12 x^{2} e^{x^{3}+1}
$$

g. Consider

$$
f_{7}(x)=2 x e^{x / 2}
$$

The derivative uses the product rule, so

$$
f_{7}^{\prime}(x)=2\left(x\left(\frac{1}{2} e^{x / 2}\right)+1 \cdot e^{x / 2}\right)=x e^{x / 2}+2 e^{x / 2}
$$

h. Consider

$$
f_{8}(x)=\sqrt{x^{4}+6}=\left(x^{4}+6\right)^{\frac{1}{2}} .
$$

The derivative uses the chain rule, so

$$
f_{8}^{\prime}(x)=\frac{1}{2}\left(x^{4}+6\right)^{-\frac{1}{2}}\left(4 x^{3}\right)=\frac{2 x^{3}}{\sqrt{x^{4}+6}} .
$$

i. Consider

$$
f_{9}(x)=3 \cos \left(2 e^{x}-1\right) .
$$

The derivative uses the chain rule, so

$$
f_{9}^{\prime}(x)=-3 \sin \left(2 e^{x}-1\right)\left(2 e^{x}\right)=-6 e^{x} \sin \left(2 e^{x}-1\right) .
$$

j. Consider

$$
f_{10}(x)=3 \sqrt{x}+\ln (4 x)=3 x^{1 / 2}+\ln (4)+\ln (x) .
$$

The derivative uses the chain rule, so

$$
f_{10}^{\prime}(x)=\frac{3}{2} x^{-1 / 2}+\frac{1}{x} .
$$

2. a. Consider

$$
y(x)=2+7\left(e^{-0.01 x}-e^{-0.5 x}\right) .
$$

The y-intercept is $y(0)=2+7(1-1)=2$. To find the x-intercept, we solve

$$
0=2+7\left(e^{-0.01 x}-e^{-0.5 x}\right) \quad \text { or } \quad 7\left(e^{-0.01 x}-e^{-0.5 x}\right)=-2 .
$$

This is a transcendental equation, so there is no direct way to solve for x. This can be solved in Maple to give the x-intercept, $x=-0.5105756$. (Alternately, we can evaluate $y(0.5)$ and $y(0.52)$ to see that the function changes signs and crosses the x-axis.) There is a horizontal asymptote for $x \rightarrow+\infty$ with $y=2$.

Next we find the derivative:

$$
y^{\prime}(x)=7\left(-0.01 e^{-0.01 x}+0.5 e^{-0.5 x}\right) .
$$

The critical points are found by setting $y^{\prime}(x)=0$. It follows that

$$
0.01 e^{-0.01 x}=0.5 e^{-0.5 x} \quad \text { or } \quad \frac{e^{-0.01 x}}{e^{-0.5 x}}=\frac{0.5}{0.01} .
$$

so

$$
e^{0.49 x}=50 \quad \text { or } \quad 0.49 x_{c}=\ln (50) \quad \text { or } \quad x_{c}=\frac{\ln (50)}{0.49}=7.9837 .
$$

Substituting this value into the function, we find:

$$
y(7.9837)=2+7\left(e^{-0.079837}-e^{-3.9919}\right)=8.3336,
$$

which gives a maximum at $(7.9837,8.3336)$. Below we see a graph of this function.

b. Consider

$$
y=3(x-2) e^{-(x-2) / 2} .
$$

The y-intercept is $y(0)=-6 e^{1}=-16.310$. To find the x-intercept, we solve

$$
3(x-2) e^{-(x-2) / 2} \quad \text { or } \quad x-2=0 \quad \text { or } \quad x=2,
$$

since the exponential function is never zero. There is a horizontal asymptote for $x \rightarrow+\infty$ with $y=0$. This uses the fact that the decaying exponential dominates the linear factor $x-2$.

Next we find the derivative using the product rule:

$$
\begin{aligned}
& y^{\prime}(x)=3\left((x-2)\left(-\frac{1}{2} e^{-(x-2) / 2}\right)+1 \cdot e^{-(x-2) / 2}\right) \\
& y^{\prime}(x)=3 e^{-(x-2) / 2}\left(2-\frac{x}{2}\right)
\end{aligned}
$$

The critical points are found by setting $y^{\prime}\left(x_{c}\right)=0$. Since the exponential function is never zero, it follows that

$$
\left(2-\frac{x_{c}}{2}\right)=0 \quad \text { or } \quad x_{c}=4 .
$$

Substituting this value into the function, we find:

$$
y(4)=3(4-2) e^{-(4-2) / 2}=6 e^{-1}=2.2073,
$$

which gives a maximum at $(4,2.2073)$. The graph of this function is above.

