1. a. See the diagram below. Let x be the two sides perpendicular to the river and y be the side parallel to the river. The function to be optimized is the area given by $A(x, y)=x y$. The constraint condition is the perimeter of the area contained by the fence, which satisfies, $P(x, y)=2 x+y=200$. It follows that we can write $y=200-2 x$. Thus, the function we need to optimize is

$$
A(x)=x(200-2 x)=200 x-2 x^{2}
$$

Differentiating:

$$
A^{\prime}(x)=200-4 x
$$

This yields a critical point (maximum) at $x_{c}=50$. It follows that the optimal dimensions for maximizing the area of this region are $x=50 \mathrm{~m}$ and $y=100 \mathrm{~m}$, yielding an maximal area of $A(50)=5000 \mathrm{~m}^{2}$.

Problem 1a

Problem 1b
b. See the diagram above. Let x be the side of one study plot area and y be the other side of the study plot area, where y is the dimension of the shared side. We are optimizing the perimeter, which satisfies the function, $P(x, y)=4 x+3 y$. The constraint condition in this problem is that the area of each plot is $10 \mathrm{~m}^{2}$, so $A(x, y)=x y=10$. This can be solved to give $y=\frac{10}{x}$. We substitute this into the perimeter equation to give:

$$
P(x)=4 x+\frac{30}{x}=4 x+30 x^{-1} .
$$

Upon differentiation, we see

$$
P^{\prime}(x)=4-30 x^{-2} .
$$

for the critical point, this is set equal to zero, so

$$
4-\frac{30}{x^{2}}=0 \quad \text { or } \quad x=\sqrt{7.5} \approx 2.7386 \mathrm{~m} \quad \text { and } \quad y=\frac{10}{\sqrt{7.5}} \approx 3.6515 \mathrm{~m} .
$$

The minimum amount of fence needed is

$$
P(2.7386)=4(2.7386)+\frac{30}{2.7386} \approx 21.9089 \mathrm{~m} .
$$

c. See the diagram below. Let the width of the box be x, the length be $4 x$, and the height be y. The function to be optimized for maximum volume is $V(x, y)=4 x^{2} y$. Since this is an open box, the constraint condition is the surface area, $S(x, y)=4 x^{2}+10 x y=1200 \mathrm{~cm}^{2}$. This equation is solved for y giving:

$$
y=\frac{1200-4 x^{2}}{10 x}=\frac{120}{x}-\frac{2 x}{5}
$$

The volume is written as a function of only the variable x,

$$
V(x)=4 x^{2}\left(\frac{120}{x}-\frac{2 x}{5}\right)=480 x-\frac{8}{5} x^{3}
$$

This function is differentiated to give

$$
V^{\prime}(x)=480-\frac{24}{5} x^{2}
$$

To find the critical x, we solve

$$
480-\frac{24}{5} x_{c}^{2}=0 \quad \text { or } \quad x_{c}^{2}=100 \quad \text { or } \quad x_{c}=10 \mathrm{~cm}
$$

Substituting back, we find $y_{c}=8 \mathrm{~cm}$ and the maximum volume is $V(10)=3200 \mathrm{~cm}^{3}$.

d. See diagram above. The objective function for this problem is the minimization of the surface area, $S(x, y)=4 x^{2}+6 x y$. The constraint is that the box must have a volume satisfying, $V(x, y)=$ $2 x^{2} y=5000 \mathrm{~cm}^{3}$. This constraint can be solved for y to give $y=\frac{5000}{2 x^{2}}=\frac{2500}{x^{2}}$. We substitute y into S to obtain:

$$
S(x)=4 x^{2}+\frac{15,000}{x}=4 x^{2}+15,000 x^{-1}
$$

This is differentiated to yield:

$$
S^{\prime}(x)=8 x-15000 x^{-2}=8 x-\frac{15,000}{x^{2}}
$$

Setting the derivative equal to zero for the critical point, we find:

$$
8 x_{c}-\frac{15,000}{x_{c}^{2}}=0 \quad \text { or } \quad x_{c}^{3}=\frac{15,000}{8}=1875
$$

It follows that $x_{c}=1875^{1 / 3} \approx 12.3311 \mathrm{~cm}$ and $y=\frac{2500}{1875^{2 / 3}} \approx 16.4414 \mathrm{~cm}$. From the formula for the surface area, we obtain the minimum surface area is

$$
S\left(x_{c}\right)=4\left(1875^{2 / 3}\right)+\frac{15,000}{1875^{1 / 3}} \approx 1824.7 \mathrm{~cm}^{2} .
$$

e. See diagram below. The objective function for this problem is the minimization of the surface area, $S(r, y)=\pi r^{2}+2 \pi r y$. The constraint is that the box must have a volume satisfying, $V(r, y)=$ $\pi r^{2} y=4500 \mathrm{~cm}^{3}$. This constraint can be solved for y to give $y=\frac{4500}{\pi r^{2}}$. We substitute y into S to obtain:

$$
S(r)=\pi r^{2}+\frac{9000}{r}=\pi r^{2}+9000 r^{-1} .
$$

This is differentiated to yield:

$$
S^{\prime}(r)=2 \pi r-9000 r^{-2}=2 \pi r-\frac{9000}{r^{2}}
$$

Setting the derivative equal to zero for the critical point, we find:

$$
2 \pi r_{c}-\frac{9000}{r_{c}^{2}}=0 \quad \text { or } \quad r_{c}^{3}=\frac{4500}{\pi} .
$$

It follows that $r_{c}=\left(\frac{4500}{\pi}\right)^{1 / 3} \approx 11.2725 \mathrm{~cm}$ and $y \approx \frac{4500}{\pi(11.2725)^{2}} \approx 11.2725 \mathrm{~cm}$. From the formula for the surface area, we obtain the minimum surface area is

$$
S\left(r_{c}\right) \approx \pi(11.2725)^{2}+\frac{9000}{11.2725} \approx 1197.6 \mathrm{~cm}^{2} .
$$

2. a. If $\sin (\theta)=\frac{3}{4}$, then we can assume the opposite side is 3 , while the hypotenuse is 4 . By Pythagorean's Theorem the adjacent side is $x=\sqrt{4^{2}-3^{2}}=\sqrt{7}$. It follows that

$$
\cos (\theta)=\frac{\sqrt{7}}{4}
$$

Using a scientific calculator, we find $\theta=\arcsin \left(\frac{3}{4}\right)=0.8480621$ radians.
b.If $\cos (\theta)=\frac{2}{7}$, then we can assume the adjacent side is 2 , while the hypotenuse is 7 . By Pythagorean's Theorem the adjacent side is $x=\sqrt{7^{2}-2^{2}}=\sqrt{45}=3 \sqrt{5}$. It follows that

$$
\sin (\theta)=\frac{3 \sqrt{5}}{7}
$$

Using a scientific calculator, we find $\theta=\arccos \left(\frac{2}{7}\right)=1.281045$ radians.
3. a. The damped spring-mass system satisfying

$$
y(t)=12+7 e^{-0.3 t} \sin (5 t)
$$

passes through $y(t)=12$ whenever $\sin (5 t)=0$. This occurs whenever $5 t=n \pi$ for any $n=0,1, \ldots$. Thus, $y\left(t_{n}\right)=12$ for $t_{n}=\frac{n \pi}{5}$ with $n=0,1, \ldots$.
b. The velocity of the mass satisfies, $v(t)=y(t)$, so

$$
\left.v(t)=y^{\prime}(t)=7\left(e^{-0.3 t}(5 \cos (5 t))-0.3 e^{-0.3 t} \sin (5 t)\right)=7 e^{-0.3 t}(5 \cos (5 t))-0.3 \sin (5 t)\right)
$$

c. The absolute maximum occurs for the first t_{m}, where $v\left(t_{m}\right)=0$. From the formula above, this occurs when

$$
\left.5 \cos \left(5 t_{m}\right)\right)-0.3 \sin \left(5 t_{m}\right)=0 \quad \text { or } \quad \tan \left(5 t_{m}\right)=\frac{50}{3}
$$

It follows that

$$
5 t_{m}=\arctan \left(\frac{50}{3}\right) \quad \text { or } \quad t_{m} \approx 0.302174
$$

Thus, the absolute maximum is

$$
y\left(t_{m}\right)=12+7 e^{-0.3 t_{m}} \sin \left(5 t_{m}\right) \approx 18.38187
$$

The absolute minimum occurs at $t_{n}=t_{m}+\frac{\pi}{5} \approx 0.930492$, so

$$
y\left(t_{n}\right)=12+7 e^{-0.3 t_{n}} \sin \left(5 t_{n}\right) \approx 6.71451
$$

A graph for the position of this mass for $t \in[0, \pi]$ is shown below.

