I-Clicker Question

Which of the following optimization Homework or Review problems would you most like to see worked in Lecture?
A. Homework 3 or 4: Optimal dimensions of an open box.
B. Homework 11 or Review 24: Optimal time of escape (otter or rabbit).
C. Homework 12: Optimal lamp illumination.
D. Review 23: Optimal size of brochure.
E. Review 26: Optimal size of holding pens.

Lamp Problem

Optimization problem seeks to find the maximum illumination by changing h if

$$
I=\frac{3.3 \cos (\theta)}{d^{2}}
$$

I-Clicker Question

Given the diagram for the table, find d.

$$
\begin{aligned}
& \text { A. } d=\frac{4}{\tan (\theta)} \\
& \text { B. } d=4 \tan (\theta) \\
& \text { C. } d=4 \sin (\theta) \\
& \text { D. } d=\frac{4}{\sin (\theta)} \\
& \text { E. } d=\frac{4}{\cos (\theta)}
\end{aligned}
$$

Lamp Problem

Given that

$$
I=\frac{3.3 \cos (\theta)}{d^{2}} \quad \text { and } \quad d=\frac{4}{\sin (\theta)}
$$

It follows that

$$
I=\frac{3.3}{16} \cos (\theta) \sin ^{2}(\theta)
$$

I-Clicker Question

Given

$$
I(\theta)=\frac{3.3}{16} \cos (\theta) \sin ^{2}(\theta)
$$

Find the derivative of $I(\theta)$?
A. $I^{\prime}(\theta)=\frac{3.3}{16} \sin (\theta)\left(\cos ^{2}(\theta)-\sin ^{2}(\theta)\right)$
B. $I^{\prime}(\theta)=-\frac{6.6}{16} \sin ^{2}(\theta) \cos (\theta)$
C. $I^{\prime}(\theta)=\frac{3.3}{16} \sin (\theta)\left(3 \cos ^{2}(\theta)-1\right)$
D. $I^{\prime}(\theta)=\frac{3.3}{16} \sin (\theta)\left(\sin ^{2}(\theta)-2 \cos ^{2}(\theta)\right)$
E. $I^{\prime}(\theta)=\frac{3.3}{16} \cos (\theta)\left(2 \cos ^{2}(\theta)-\sin ^{2}(\theta)\right)$

Hint: You may need to use the identity $\cos ^{2}(\theta)+\sin ^{2}(\theta)=1$

Lamp Problem

For

$$
I=\frac{3.3 \cos (\theta)}{d^{2}}
$$

We have

$$
I^{\prime}(\theta)=\frac{3.3}{16} \sin (\theta)\left(3 \cos ^{2}(\theta)-1\right)
$$

Lamp Problem

For

$$
I=\frac{3.3 \cos (\theta)}{d^{2}}
$$

We have

$$
I^{\prime}(\theta)=\frac{3.3}{16} \sin (\theta)\left(3 \cos ^{2}(\theta)-1\right)
$$

The optimal solution satisfies

$$
\frac{3.3}{16} \sin (\theta)\left(3 \cos ^{2}(\theta)-1\right)=0
$$

Lamp Problem

For

$$
I=\frac{3.3 \cos (\theta)}{d^{2}}
$$

We have

$$
I^{\prime}(\theta)=\frac{3.3}{16} \sin (\theta)\left(3 \cos ^{2}(\theta)-1\right)
$$

The optimal solution satisfies

$$
\frac{3.3}{16} \sin (\theta)\left(3 \cos ^{2}(\theta)-1\right)=0
$$

It follows that either

$$
\sin (\theta)=0 \quad \text { or } \quad 3 \cos ^{2}(\theta)-1
$$

Lamp Problem

For

$$
I=\frac{3.3 \cos (\theta)}{d^{2}}
$$

We have

$$
I^{\prime}(\theta)=\frac{3.3}{16} \sin (\theta)\left(3 \cos ^{2}(\theta)-1\right)
$$

The optimal solution satisfies

$$
\frac{3.3}{16} \sin (\theta)\left(3 \cos ^{2}(\theta)-1\right)=0
$$

It follows that either

$$
\sin (\theta)=0 \quad \text { or } \quad 3 \cos ^{2}(\theta)-1
$$

Since $\sin (\theta)=0$ implies $\theta=0$, which is not optimal, it follows that

$$
\cos (\theta)=\frac{1}{\sqrt{3}}
$$

I-Clicker Question

Given

$$
\cos (\theta)=\frac{1}{\sqrt{3}}=\frac{h}{d}
$$

we need $\sin (\theta)$. What is $\sin (\theta)$?
A. $\sin (\theta)=\frac{2}{\sqrt{3}}$
B. $\sin (\theta)=\frac{2}{3}$
C. $\sin (\theta)=\frac{\sqrt{3}}{2}$
D. $\sin (\theta)=\frac{1}{2}$
E. $\sin (\theta)=\sqrt{\frac{2}{3}}$

Lamp Problem

We combine our results.

- The optimal solution has

$$
\cos \left(\theta_{o p t}\right)=\frac{1}{\sqrt{3}}=\frac{h}{d}
$$

Lamp Problem

We combine our results.

- The optimal solution has

$$
\cos \left(\theta_{o p t}\right)=\frac{1}{\sqrt{3}}=\frac{h}{d}
$$

- The hypotenuse is

$$
d=\frac{4}{\sin \left(\theta_{o p t}\right)} \quad \text { with } \quad \sin \left(\theta_{o p t}\right)=\sqrt{\frac{2}{3}}
$$

Lamp Problem

We combine our results.

- The optimal solution has

$$
\cos \left(\theta_{o p t}\right)=\frac{1}{\sqrt{3}}=\frac{h}{d}
$$

- The hypotenuse is

$$
d=\frac{4}{\sin \left(\theta_{o p t}\right)} \quad \text { with } \quad \sin \left(\theta_{o p t}\right)=\sqrt{\frac{2}{3}}
$$

- It follows that

$$
h=\frac{4}{\sqrt{2}}
$$

Box Problem - I-Clicker

An open box with its base having a length twice its width is to be constructed with 800 square cm of material. Find its dimensions that maximize the volume.

Box Problem - I-Clicker

An open box with its base having a length twice its width is to be constructed with 800 square cm of material. Find its dimensions that maximize the volume.

Let its width be denoted x and its height be denoted y, then the volume, $V(x, y)$, of this open box satisfies:
A. $V(x, y)=2 x^{2}+6 x y$
B. $V(x, y)=2 x^{2} y$
C. $V(x, y)=2 x y^{2}$
D. $V(x, y)=x^{2} y$
E. $V(x, y)=x^{2}+4 x y$

Box Problem－I－Clicker

An open box with its base having a length twice its width is to be constructed with 800 square cm of material．Find its dimensions that maximize the volume．

Let its width be denoted x and its height be denoted y ，then the volume，$V(x, y)$ ，of this open box satisfies：
A．$V(x, y)=2 x^{2}+6 x y$
B．$V(x, y)=2 x^{2} y$
C．$V(x, y)=2 x y^{2}$
D．$V(x, y)=x^{2} y$
E．$V(x, y)=x^{2}+4 x y$
This is the Objective function．

Box Problem－I－Clicker

The open box is to be constructed with 800 square cm of material．Find an equation for the surface area，$S(x, y)$ ．

Box Problem - I-Clicker

The open box is to be constructed with 800 square cm of material. Find an equation for the surface area, $S(x, y)$.
A. $S(x, y)=2 x^{2}+4 x y=800$
B. $S(x, y)=2 x^{2} y+2 x^{2}=800$
C. $S(x, y)=2 x y^{2}=800$
D. $S(x, y)=2 x^{2}+6 x y=800$
E. $S(x, y)=x^{2}+4 x y=800$

Box Problem - I-Clicker

The open box is to be constructed with 800 square cm of material. Find an equation for the surface area, $S(x, y)$.
A. $S(x, y)=2 x^{2}+4 x y=800$
B. $S(x, y)=2 x^{2} y+2 x^{2}=800$
C. $S(x, y)=2 x y^{2}=800$
D. $S(x, y)=2 x^{2}+6 x y=800$
E. $S(x, y)=x^{2}+4 x y=800$

This is the Constraint condition.

Box Problem

Objective function is

$$
V(x, y)=2 x^{2} y
$$

with Constraint condition

$$
S(x, y)=2 x^{2}+6 x y=800
$$

Box Problem

Objective function is

$$
V(x, y)=2 x^{2} y
$$

with Constraint condition

$$
S(x, y)=2 x^{2}+6 x y=800
$$

Thus, $6 x y=800-2 x^{2}$, or

Box Problem

Objective function is

$$
V(x, y)=2 x^{2} y
$$

with Constraint condition

$$
S(x, y)=2 x^{2}+6 x y=800
$$

Thus, $6 x y=800-2 x^{2}$, or

$$
y=\frac{400}{3 x}-\frac{x}{3}
$$

Box Problem

Objective function is

$$
V(x, y)=2 x^{2} y
$$

with Constraint condition

$$
S(x, y)=2 x^{2}+6 x y=800
$$

Thus, $6 x y=800-2 x^{2}$, or

$$
y=\frac{400}{3 x}-\frac{x}{3}
$$

The objective function becomes

$$
V(x)=2 x^{2}\left(\frac{400}{3 x}-\frac{x}{3}\right)=\frac{2}{3}\left(400 x-x^{3}\right)
$$

Box Problem

Since the objective function is

$$
V(x)=\frac{2}{3}\left(400 x-x^{3}\right),
$$

we differentiate to obtain

Box Problem

Since the objective function is

$$
V(x)=\frac{2}{3}\left(400 x-x^{3}\right),
$$

we differentiate to obtain

$$
V^{\prime}(x)=\frac{2}{3}\left(400-3 x^{2}\right)
$$

Box Problem

Since the objective function is

$$
V(x)=\frac{2}{3}\left(400 x-x^{3}\right),
$$

we differentiate to obtain

$$
V^{\prime}(x)=\frac{2}{3}\left(400-3 x^{2}\right)=0
$$

for optimal solution.

Box Problem

Since the objective function is

$$
V(x)=\frac{2}{3}\left(400 x-x^{3}\right),
$$

we differentiate to obtain

$$
V^{\prime}(x)=\frac{2}{3}\left(400-3 x^{2}\right)=0
$$

for optimal solution.
It follows that

$$
x_{o p t}=\frac{20}{\sqrt{3}}
$$

Box Problem

Since the objective function is

$$
V(x)=\frac{2}{3}\left(400 x-x^{3}\right),
$$

we differentiate to obtain

$$
V^{\prime}(x)=\frac{2}{3}\left(400-3 x^{2}\right)=0
$$

for optimal solution.
It follows that

$$
x_{o p t}=\frac{20}{\sqrt{3}}
$$

The length, height, and volume are easily obtained from this.

