CHAPTER 2:
TRIGONOMETRY

1 TRIGONOMETRIC FUNCTIONS

Many phenomena in biology appear in cycles. Often these cycles are driven
by the natural physical cycles that result from the daily cycle of light or
the annual cycle of the seasons. Oscillations are most easily studied using
trigonometric functions. This section begins with a discussion of annual
temperature variations, then we review some trigonometric functions. The
emphasis for this section is modeling oscillatory behavior with the sine and
cosine functions.

1.1 ANNUAL TEMPERATURE CYCLES

Month Jan Feb Mar Apr May Jun
San Diego || 66/49 | 67/51 | 66/53 | 68/56 | 69/59 | 72/62
Chicago || 29/13 | 34/17 | 46/29 | 59/39 | 70/48 | 80/58
Month Jul Aug Sep Oct Nov Dec
San Diego || 76/66 | 78/68 | 77/66 | 75/61 | 70/54 | 66/49
Chicago || 84/63 | 82/62 | 75/54 | 63/42 | 48/32 | 34/19

Table 1: Table of high and low temperatures of San Diego and Chicago
cities through out the year.

Often the weather report states what the average expected temperature
of a given day is. These averages are derived from long term collection of
data on weather for a particular location'. Clearly, there is a wide varia-
tion from these averages, but they provide approximations to the expected
weather for a particular time of year. The long term averages also provide
a baseline to help researchers predict the effects of global warming over the
background noise of annual variation. Obviously, there are seasonal differ-
ences in the average daily temperature with higher averages in the summer

'www.randmenally.com/, last visited 10,/21/09.
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and lower averages in the winter. We provide Table 1 showing the monthly
average high and low temperatures for San Diego and Chicago.

What mathematical tools can help predict the annual temperature cy-
cles? Polynomials and exponentials do not exhibit the periodic behavior
that we see for these average monthly temperatures, so these functions are
not appropriate for modeling this system. The most natural candidates for
studying monthly temperatures are the trigonometric functions. In Figure 1
are graphs of the average monthly temperatures for San Diego and Chicago,
which are computed from Table 1 by averaging the average high and low
temperatures.

Temperatures for San Diego and Chicago
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Figure 1: Graph of the monthly average temperature data taken from Ta-
ble 1, with the curves that best fit the data.

The two graphs of Figure 1 have some similarities and clear differences.
They both show the same seasonal period as expected; however, the seasonal
variation or amplitude of oscillation for Chicago is much greater than San
Diego. Also, the overall average temperature for San Diego, being further
south and near the ocean, is greater than the average for Chicago. The
overlying models in the graph of Figure 1 use cosine functions. The fit using
the cosine function provides a reasonable approximation though clearly there
are errors due to other complicating factors in weather prediction. Before
providing more details of the models for these temperature cycles, we review
some basic facts about trigonometric functions.
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1.2 TRIGONOMETRIC FUNCTIONS

The trigonometric functions are often called circular functions, which em-
phasizes their periodic nature and shows their connection to a circle. Let
(z,y) be a point on a circle of radius r centered at the origin. Define the
angle 6 between the ray connecting the point to the origin and the z-axis.
(See the diagram in Figure 2.)

Y a

(X,y)

><\I

Figure 2: Diagram of a circle on the Cartesian plane showing the relation-
ship between trigonometric functions and the circle.

The six basic trigonometric functions are defined in terms
of z,y, and r (including the sign of x and y) shown in
the diagram of Figure 2 by the following,

sin9:g, cos@zf, tanﬁzg, (2.1)
r r x

cscﬁzf, secl = f’ cot 0 = . (2.2)
y x y

We will concentrate almost exclusively on the first two of these trigonometric
functions, sine and cosine.
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1.3 RADIAN MEASURE

Before discussing the nature of the trigonometric functions in more detail, we
need to discuss radian measure of the angle. If you have had trigonometry
before, you probably used degrees to measure an angle. However, they are
not the appropriate unit to use in Calculus. The easiest way to consider
radian measures is to examine the unit circle (which is simply the circle in
the diagram in Figure 2 with a radius of 1). From earlier courses, you may
recall that the circumference of a circle is 277, so the distance around the
perimeter of the unit circle is 27. The radian measure of the angle 6 in the
diagram of Figure 2 is simply the distance along the circumference of the
unit circle. Thus, a 45° angle is 1 of the distance around the unit circle or

8
%’r = 7 radians. Similarly, 90° and 180° angles convert to § and 7 radians,
respectively.

The formulae for converting from degrees to radians or
radians to degrees are,

o_ T _ ~
1° = 130 0.01745 radians,

or,
[e)

~ 57.296°.

1 radian =

A I3 - - .
= Trigonometric — Degree-Radian Conversion

This JavaScript is provided for easy conversions of degrees to radians or
radians to degrees.

1.4 SINE AND COSINE

From the formulae for sine (sin) and cosine (cos) of Equation (2.1), we see
that if you take a unit circle, then the cosine function gives the x value of
the angle (measured in radians), while the sine function gives the y value
of the angle. The tangent function (tan) gives the slope of the line (y/z).
In Figure 3 we have a graph of the sine and cosine functions for the angles
from —27 to 2, i.e., the graph shows sin(#) and cos(0) for 6 € [—27, 27].
There are several things to notice about these graphs. First, you notice
the 27 periodicity. In other words, the functions repeat the same pattern
every 27 radians. This is clear from the circle of Figure 2 because every
time you go 27 radians around the circle, you return to the same point. The
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Sine and Cosine in Radians

— sin(®) |
== cos(0) | ,

=27 -T

0 (radians)

Figure 3: Sine and Cosine functions for radians.

second point is that both the sine and cosine functions are bounded between
—1 and 1. The sine function has its maximum value at 5 with sin (g) =1
and its minimum value at 37” with sin ( 37”) = —1. Because of the periodicity,

these extrema re-occur every integer multiple of 2.

Trigonometric — Sine and Cosine

This applet helps you link the picture of the circle of Figure 2 and the
trigonometric functions, sine and cosine graphed in Figure 3, using the dy-
namics of an applet. Click on the applet to place the point. Table 2 gives
the angle in degrees and radians and values of the sine and cosine functions
at the angle chosen.

Table 2 has some important values of the trig functions to remember.
The following example considers basic conversions from degrees to radians
and finding the values of the sine and cosine functions at certain angles.
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6 | sin(f) | cos(0)
0 0 1
™ 1 V3
6 2 2
™ V2 V2
4 2 2
m V3 1
3 2 2
5 1 0
T 0 -1
= -1 0
2w 0 1

Table 2: Some of the most common values of trigonometric functions.

Radians, Sine, and Cosine

Do not use a calculator for these.

a. Find the radian measure (z) for the following angles given in degrees,
6 = 0°,30°,90°,135°,210°,240°,270°, 315°. (2.3)
b. Determine the value of both sin(x) and cos(z) for each of these angles.

Solution: a. Recall the conversion formula in the main lecture section. It
states that 1° = 7/180 radians. Thus, given an angle in degrees 6 the radian
measure z is given by the formula

s
= —.
180

The answers become fractional multiples of . For example, when 6 =
135°, then the radian measure is

135w 3w

180 4
The list of the angles in Equation (2.3) can be easily converted as shown

in Section 1.3 to yield the following for all of the angles € listed at (2.3),

_o L T o (m A om a T
r=05 5 30 g

See Table 3 for a more complete listing.



1. TRIGONOMETRIC FUNCTIONS 7

b. To find the sine and cosine values for these angles without the use of
a calculator, we refer to Table 2 and use the geometry from the circle. If the
angle is located in any quadrant other than the first quadrant, then we need
to find the reference angle. The reference angle is an angle between 0 and 7
that is made with the z-axis, as we have 6 in Figure 2. Then, for the angle
%r that lies in the third quadrant, we find there is an angle of & radians
between this ray and the negative side of the z-axis. Hence, considering
that angle, we get a reference angle of § radians. The reference angle then
gives the magnitude of the sine and cosine functions, we just have to refer
to Table 2.

Lastly, we need to assign a sign to the function based on which quadrant
it lies. Both sine and cosine are positive in the first quadrant. The sine is
positive and the cosine is negative in the second quadrant, while both are
negative in the third quadrant. In the fourth quadrant, the cosine is positive
and the sine is negative.

The angles that lie on either the x or y-axes are special ones that you
should get to know very well to make it much easier to sketch graphs of
the trig functions. The angles z = 0, 7, and 37” are special angles on the
axes, while the others (except = §) require finding the reference angle and
which quadrant they reside. We see that when z = 3[{ or %r, the reference
angle is 7, yielding the magnitude of both sine and cosine functions as
from the table. However, the first of these is in the second quadrant, while
the second is in the third quadrant. Since we discussed the angle %’T, the
remaining angle is x = %’r. It has a reference angle of § and resides in the
third quadrant.

In Table 3 we present a table summarizing our results. N

degrees (0) | 0° | 30° | 90° | 135° | 210° | 240° | 270° | 315°

radians (z) 5 5 3T %’r %ﬂ 3z =
sin(z) 0| g [ 1] [ -5 [-9[ -1 [
cos(x) 1 @ 0 —g —v3 | -1 0 g

Table 3: Results of Example 1.

1.5 PROPERTIES AND IDENTITIES FOR SINE AND COSINE

There are a number of properties that are significant for sine and cosine.
Below we list some of the most important properties for cosine.
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Properties of Cosine
1. Periodic with period 27
2. Cosine is an even function
3. Cosine is bounded by —1 and 1
4. Maximum at = 0 with cos(0) =1

e By periodicity, other maxima at x, = 2nmw
with cos(2nm) =1 (n any integer)

5. Minimum at = 7 with cos(m) = —1

e By periodicity, other minima at z,, = (2n+1)7
with cos((2n + 1)7) = —1 (n any integer)

6. Zeroes of cosine separated by 7 with cos(x,) = 0
when z, = § + n7 (n any integer)

There are a similar set of properties for the sine function.

Properties of Sine
1. Periodic with period 27
2. Sine is an odd function

3. Sine is bounded by —1 and 1

4. Maximum at z = g with sin (g) =1

e By periodicity, other maxima at z,, = 2n7+ 3
with sin(z,) = 1 (n any integer)
5. Minimum at x = 37“ with sin (37”) =-1
e By periodicity, other minima at z,, = 2nm+ 37”
with sin(z,) = —1 (n any integer)

6. Zeroes of sine separated by 7 with sin(x,,) = 0 when
xn, = nm (n any integer)
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When studying trigonometry, there are many special trigonometric iden-
tities that are frequently learned. We are going to highlight a very few that
are particularly useful.

Some Identities for Sine and Cosine
1. cos?(z) + sin?(x) = 1 for all values of z

2. Adding and subtracting angles for cosine

cos(x+y) = cos(z)cos(y) — sin(x) sin(y)
cos(zr —y) = cos(z)cos(y) + sin(z) sin(y)

3. Adding and subtracting angles for sine

sin(x + y) = sin(x) cos(y) + cos(x) sin(y)

sin(z — y) = sin(x) cos(y) — cos(z) sin(y)

The first of these identities is readily verified using Pythagorean’s The-
orem and the definitions of sine and cosine. The second two identities are
not as easily shown, and we will omit their proofs here?. The second two
identities are useful in showing that from a modeling perspective, the sine

and cosine functions are often interchangeable.

Sine and Cosine Relationship
Use the trigonometric properties and identities to show that

cos(x) = sin <a; + g)

and
T

sin(z) = cos (ac - 5)

Solution: We begin using the additive identity formula for sine functions

s s

sin (ag + g) = sin(z) cos (§> + cos(x) sin (§>

2Proofs use basic  definitions of the sine and cosine functions
http://en.wikipedia.org/wiki/Proofs_of_trigonometric_identities# Angle_sum_identities -
last visited 8/11
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By our properties above, we know cos (%) = 0 and sin (g) =1, so
i T
sin (33 + 5) = cos(x).

This relationship says that the cosine function is exactly the same as the

sine function, but shifted out of phase by —7 (or the sine curve shifted to

the left by 7).

Using the subtractive identity formula for cosine functions
(2= 5) = costa) os (3) + sin(o)sin ()
cos [z — =) = cos(zx)cos | = s sin | —
T g x 5 in(z)sin { 5

Again cos (%) =0 and sin (g) =1, s0

cos (:v — g) = sin(z).

This relationship shows that the sine function has the same form as the
cosine function, but shifted out of phase by 7 (or the cosine curve shifted
to the right by 7). <

1.6 PERIOD, AMPLITUDE, PHASE, AND VERTICAL SHIFT

The sine and cosine functions above have a period of 27 and an amplitude of
one, so how can we adjust these functions to fit other periodic data, such as
the temperature data for Chicago and San Diego given in the introduction
to this section? When data follows a simple oscillatory behavior, then a
general modeling form using the cosine function is

y(x) = A+ B cos(w(z — ¢)), (2.4)
while a closely related model using the sine function is
y(xr) = A+ B sin(w(z — ¢)). (2.5)

There are four parameters in these models. The first parameter is A,
which gives the wvertical shift of the models. The parameter B gives the
amplitude of the oscillations in the models.
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Trigonometric Model Parameters
Vertical Shift and Amplitude

e The model parameter A is the vertical shift, which
is associated with the average height of the model

e The model parameter B gives the amplitude, which
measures the distance from the average, A, to the
maximum (or minimum) of the model

The parameter w is the frequency of the models.

Trigonometric Model Parameters
Frequency and Period

e The model parameter w is the frequency, which
gives the number of periods of the model that occur
as x varies over 27 radians

2
e The period is given by T = il
w

It is the periodic nature of the models for which these functions have been
chosen. The last parameter, ¢, is the phase shift.

Trigonometric Model Parameters
Phase Shift

e The model parameter ¢ is the phase shift, which
shifts our models to the left or right, thus, gives a
horizontal shift

e If the period is denoted T = %’r, then the principle
phase shift satisfies ¢ € [0,T)

e By periodicity of the model, if ¢ is any phase shift,
then

2
¢1:¢+TLT=¢+E, n an integer
w

is a phase shift for an equivalent model
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When fitting the cosine and sine models, (2.4) and (2.5), there are choices
that can be made with the parameters. The parameter, A, is unique. The
parameters for amplitude and frequency, B and w, are unique in magnitude,
but the sign of the parameter can be chosen by the modeler. Usually, we
prefer to take the parameters B and w to be positive. Because of the peri-
odicity of these trigonometric functions, there are infinitely many possible
choices for the phase shift, ¢. However, it is customary to select the phase
shift satisfying 0 < ¢ < T, the principle phase shift. By taking the principle
phase shift and positive values for the amplitude and frequency, then the
four parameters in the cosine and sine models, A, B, w, and ¢, are unique.

Period and Amplitude for the Sine Function

This first example examines amplitude and frequency in the sine model.
Find the period and amplitude of

y(x) = 4sin(2x).
Determine all maxima and minima for x € [—2m, 2] and sketch the graph.

Solution: From the information above, we see that the amplitude of this
function is 4, which says that it oscillates between —4 and 4, and the fre-
quency is 2. The easiest way to find the period T is to let x = T in the
function, then set the argument of the trig function to 27, and finally solve
this for T'. This means,

2T = 2, SO T=m.

Alternately, the definition of period given the frequency, w, gives:

2r 2w
= — = — =TT.

w 2

From Table 2, we see that this function begins at 0 when x = 0. It

achieves a maximum of 4 where the argument 2x = 7, which gives x = 7.
The function decreases to a minimum of —4 at x = %Tﬁ’ since the argument

there is 2x = 37” Then it increases to where it completes its cycle at z = 7.
By periodicity, there are other maxima at x =7+ 7 = 2f, v = —7w+ § =
—37 and z = —%T”. Similarly, there are other minima at z = —%’r, —7, and
The sine function is an odd function, so the graph is symmetric about

the origin. The graph is shown in Figure 4 for = € [—2m, 27]. N
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y = 4 sin(2x)

Tt 0 T 21
X (radians)

Figure 4: Graph of the function y = 4sin(2z) of Example 3.

Graphing a Sine Function
Sketch the graph of the following function,

y(x) = 3sin(2z) — 2,

for —27 < z < 2. Determine the amplitude and period of oscillation for
this function. Find all maxima and minima.

Solution: From above, this function is shifted vertically downward by the
constant —2. The amplitude is given by 3 (multiplying the sine function),
so the graph will oscillate between —5 < y < 1. These high and low points
of the graph are found by letting the sine function take its maximum and
minimum values given by 1 and —1, respectively. According to Table 2,
this happens when the argument 2x = 7, which implies # = 7. Then

2
sin(2zx) = sin(r/2) = 1. Thus, at x = 7,
y(r/4) =3(1) —2=1.

When 2z = 3, or z = 3T then sin(2z) = sin(37/2) = —1. Thus, at

x = 37/4 we have,
y(3w/4) = 3(—1) — 2 = 5.
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To find the period, T, we have

T=—, SO T=—=m.
w 2
Thus, the period of this function is 7.

The best way to sketch a graph of either the sine and cosine function
is to take the period of the function, then divide it into 4 even parts. For
this example, we divide the interval [0, 7] into 4 parts. Next we evaluate the
function at each of the endpoints of these subintervals, which for this case
occurs at 0,7/4,7/2,37/4, and 7. We obtain the following,

= 3sin(2(0)) —2 = 351n(0)—2 = -2

3sin(2(7r/4)) = 3sin(n/2) -2 = 1,

3sin(2(n/2)) —2 = 3sin(7r) —2 = =2,
(2(
(2(

3sin(2 37r/4)) = 3sin(37/2) —2 = -5,
= 3sin(2(7)) -2 = SSin(QTr)—2 = —2.

[\)
— — ~— — —
Il

y =3sin(2x) - 2

=21 -7t 0 T 21
X (radians)

Figure 5: Graph of the function y(x) = 3sin(2z) — 2 of Example 4.

This takes on the important values (minima and maxima) and goes
through one cycle, which makes the sketching easy. One simply repeats
the graph to extend it. In Figure 5 there is a graph of this function.
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Since this function is periodic with period 7 and a maximum of y = 1

occurs at ¥ = 7, there are the other maxima at z = 7 — 2m = —%”,
T-T= —%’T, and 7 + 7 = %’T. Since a minimum of y = —5 occurs at
T = %T’T, we can add and subtract integer multiples of 7w to obtain the other
minima at x = —%”, —7%» and %ﬂ. N

Vertical Shift with the Cosine Function

Consider a model given by
y(x) = 3 — 2cos(3z), z € [0,2n].

Find the wvertical shift, period, and amplitude of this model. Determine all
minima and maxima in the domain and sketch the graph.

Solution: This function is shifted vertically by the constant 3. The ampli-
tude is the 2 multiplying the cosine function, but there is a negative sign in
this model, which forces the model in the opposite direction of the cosine
model given by (2.4). The vertical shift of 3 and amplitude of 2 means that
the graph oscillates between 1 < y < 5, since the range of the cosine function
varies between —1 and 1.

To find the period, T', we solve

3T =2, SO T=—.

Thus, the period of this function is %’r
The easiest way to find a minimum or maximum is to use the largest
and smallest values of the cosine function, 1 and —1, which occur when the

argument is 0 and 7, see Table 2. Hence, when = = 0, cos(3z) = 1 and
y(0) =3 -2(1) = 1,
which is a minimum. When z = %, cos(3z) = cos(m) = —1 and
y(m/3) =3 —2(-1) =5,

which is a maximum. By periodicity, the other minima occur at integer
multiples of %’r, which gives the minima in the domain at z = 0, %ﬂ, %’r,
and 2m. Similarly, the maxima in the domain occur at z = %, 7, and 57”
Figure 6 is a graph of this function.
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y =3 - 2 cos(3x)

1 ; ;
0 /2 ny 3m/2 21

X (radians)
Figure 6: Graph of the function y = 3 — 2 cos(3x) of Example 5.

We can insert a phase shift of half a period to make the constant for
the amplitude be positive and produce the same model. Consider the model
with a half period phase shift given by

y(z) =3+ 2cos (3(z — %)) .

To show this is the same model we employ the angle subtraction identity
for the cosine function.

y(r) = 3+ 2cos (S(x — %)) ,

3+ 2cos(3z — ),

3 + 2(cos(3z) cos(m) + sin(3z) sin()),
= 3 —2cos(3x),

since cos(m) = —1 and sin(7) = 0. N

Phase Shift of Half a Period

A phase shift of half a period creates an equivalent sine
or cosine model with the sign of the amplitude reversed.
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Phase shifts are important matching data in periodic models. The easiest
model to match a phase shift is the cosine model (2.4), since the maximum
of the cosine function occurs when the argument is zero. The next exam-
ple explores graphing the cosine model with a phase shift and gives the
corresponding sine model that produces the same graph.

Graphing a Cosine Function with a Phase Shift

Consider the following cosine model, which includes a phase shift

Xr— T

y(z) = 4 + 6 cos (2> . e [—dm 4n).

Find the vertical shift, amplitude, period, and phase shift for this model. De-
termine all maxima and minima in the domain. Finally, find the equivalent
sine model with the principle phase shift (a phase shift, ¢ € [0,T"), where T
is the period of the model.

Solution: From the form of the model it is easy to read off the vertical shift,
given by A = 4. The amplitude is similarly easy to read as B = 6. If we
rewrite the function as,

y(r) =4+ 6cos (%(x — 71')) ,

then the frequency of the model is w = % This allows computation of the
period, T,

T = = 4.

ol ¥

This also allows easy reading of the phase shift, ¢ = 7.

The phase shift indicates that this is a cosine function shifted horizontally
x = m units to the right. Since the cosine function has a maximum value
when its argument is zero (see Table 2), this model will achieve a maximum
at £ = wm. With the period being T' = 4x, the easiest way to graph this
function is to start at x = 7 and proceed to x = 57, completing one period.
Then we use the periodicity to get the desired graph over the domain.

The significant points for evaluation are always each quarter of the pe-
riod. Thus, for this model the points of interest will be x = 7, 27, 37, 4,
and 5m. (Note that the last point is outside the domain.) We substitute
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these values into the cosine model to complete one period, giving

y(m) = 4+6cos <7T;7T> = 4+6cos(0) = 4+6(1) = 10,

2 —
y(2m) = 4—1—6cos< 7r2 ﬂ) = 4+6€OS(%) = 4+6(0) = 4,
3 —

3

) = 4+6cos(m) = 4+6(-1) = -2,
)

= 4+600s<327r> = 446(0) = 4,

y(3m) = 4+6(:os(

A — 7

2
2

y(dm) = 4+GCos<

y(5m) = 4+ 6cos <57r2 7r> = 4+6cos(2m) = 4+6(1) = 10.
Since this function has period, T' = 4w, we cycle backwards one and a quarter
periods to easily obtain the values of the model with y(0) =4, y(—7) = -2,
y(—2m) =4, y(—37) = 10, and y(—4n) = 4,. The graph is readily produced
from the function evaluations given on the domain x € [—4m.4x]. In Figure 7
there is a graph of this function.

y(X) =4 + 6 cos((x — )/2)

—4m -21 0 21 41
X (radians)

Figure 7: Graph of the function y(z) = 4 4 6 cos (%5*) of Example 6.

Observing the graph, we see that the model is vertically shifted by y = 4
and oscillates about this line. As noted above, it has an amplitude of B = 6,
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so oscillates 6 units above and below this average line with a period of
T = 4. Finally, we note that this cosine function is shifted to the right by
the phase shift, ¢ = .

From either the graph or the values computed above, we see that in the
domain, this model has maxima of y(Zmar) = 10 at Xmee = —37 and 7.
The model has minima of y(Zyin) = —2 at Ty = —7 and 37.

A closer look at the graph in Figure 7 indicates that this model looks
more like a standard sine function model. Suppose we want to use the sine
model

y(x) = A+ Bsin(w(x — ¢)).

Since we want the graph to be identical, the vertical shift, amplitude, and
period must be the same, so A =4, B=6, and w = % or

y(z) =4+6sin (3(z — ¢)) .

It remains to find the appropriate phase shift, ¢.
Recall from Example 2 that the cosine function is horizontally shifted to
the left by 5 of the sine function. Thus,

cos ((z—m)) =sin((x —7)+ ) =sin (3(z — 9)) .
It follows that we want

+ % or ¢ =0.

™o
2 2
Thus, there is no phase shift for the sine model, and the equivalent sine
model is given by

y(z) =4+ 6sin (§).

The example above shows that models using sine or cosine functions
are equivalent when the wvertical shift, amplitude, and period are the same.
Only the phase shift differs, and our trigonometric identities readily find this
difference in the phase shift.
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Phase Shift for Equivalent Sine and Cosine Models
Suppose that the sine and cosine models are equivalent, so

sin(w(z — ¢1)) = cos(w(z — ¢2)).
The relationship between the phase shifts, ¢1 and ¢o satisfies:
T
1= @2 — %0

The identity above is easily shown using the result from Example 2. This
example showed that

sin(w(z — ¢1)) = cos (w(z — ¢1) — §) = cos(w(z — ¢2)).

Equating arguments of the cosine function gives

w(x —¢1) —
—wéy —

w(x — ¢2),

= —W¢2,

¢ = ¢2—%-

SRR

Note: It is important to remember that the phase shift is not unique and
can vary by integer multiples of the period, T = %’T

1.7 RETURN TO THE ANNUAL TEMPERATURE VARIATION

At the beginning of this section, there is an example showing the temper-
ature variation between the seasons for Chicago and San Diego. We want
to show what the mathematical models are for the curves in the graphs and
explain them in terms of the definitions listed above to give you a better
intuitive feel for the period, amplitude, phase shift, and vertical shift. The
cosine model has the form

T(m) = A+ Bcos(w(m — ¢)),

where T is the average monthly temperature and m is the month with
January satisfying m = 0. We need to find the appropriate values for the
parameters A, B, w, and ¢, and we want to select B > 0, w > 0, and
¢ € [0, P), where P is the period of the model. The method for fitting the
actual data to the model employs a couple of techniques. First, we know
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that the period of this function must be 12 months. This constrains our
parameter w to satisfy

120 =21 or w= % — 0.5236.

We know that the cosine function oscillates around its average, so the
value of A, which gives the vertical shift, is the average of the monthly tem-
peratures. From Table 1, we find the average temperature of San Diego
for each month by averaging the minimum and maximum temperatures
recorded each month. The average temperature for the year satisfies:

A = 57.5459+459.5+62+64+67+71+72.5471.5+68+62457.5
- 12

= 64.29,

while for Chicago, we find
A =49.17.

There are a several methods to obtain fits for the parameters B and
¢. We chose to find a nonlinear least squares fit to these parameters with
Excel’s Solver. The model for the average monthly temperature in San Diego
is given by

T(m) = 64.29 + 7.29 cos(0.5236(m — 6.74)),

while the average monthly temperature in Chicago follows the formula
T(m) = 49.17 + 25.51 cos(0.5236(m — 6.15)).

Here, we have again that T is the average monthly temperature and m is
the month number with January satisfying m = 0.

We have discussed the wvertical shift (average temperature given by A)
and the period (12 months giving a frequency of w = § = 0.5236). The am-
plitude is given by the parameter B, which represents the maximum amount
the temperature varies from the annual average. With its “Mediterranean”
climate, San Diego has the significantly lower amplitude with only a 7.29°F
variation higher and lower than its average annual temperature. Chicago
has a temperature variation of 25.51°F above and below its lower average of
49.17°F. Thus, our model predicts that the temperature of San Diego will
vary from 57.0°F to 71.58°F (average monthly temperature), while Chicago
will vary from 23.66°F to 74.68°F (average monthly temperature). These
should be apparent from the graph of Figure 1.

Finally, we interpret the phase shift, ¢, which indicates that the graph is

shifted ¢ units to the right. For San Diego, we see a phase shift of ¢ = 6.74.



22 CHAPTER 2. TRIGONOMETRY

This means that the maximum temperature occurs at 6.74 months (late
July), instead of January, as one would expect. For Chicago, the phase shift
is ¢ = 6.15 months, which gives the high occurring a little earlier (early
July). Be sure to view the original graph of Figure 1, and match how the
parameters are reflected in this graph as it is important for understanding
the use of trigonometric functions.

The cosine models given above for the average temperature of San Diego
and Chicago can be rewritten with the sine function,

T(m) = A+ Bsin(w(m — ¢2)).

The values for A, B, and w are the same for both the sine and cosine models.
However, the phase shift for the sine model differs from the cosine model.
The formula above shows that the sine phase shift, ¢9, satisfies

br=0- 5,

where ¢ is the phase shift from the cosine model. This formula gives ¢o =
3.74 for San Diego and ¢o = 3.15 for Chicago. This phase shift for the
sine model is a quarter of the period less than the phase shift for the cosine
model. Thus, we write the sine models for the average monthly temperature
in San Diego,

T(m) = 64.29 + 7.29sin(0.5236(m — 3.74)),
and the average monthly temperature in Chicago,
T(m) = 49.17 + 25.51sin(0.5236(m — 3.15)).

These models produce exactly the same graphs as seen in Figure 1.

Model with Phase Shift

Consider an oscillatory set of population data that is periodic with a period
of 10 yr. Suppose that there is a maximum population (in thousands) of 26
at t = 2 and a minimum population (in thousands) of 14 at ¢ = 7. Assume
these data fit a model of the form

y(t) = A+ B sin(w(t — ¢)).

Find the appropriate constants A, B, w, and ¢. Choose B > 0 and w > 0,
then find ¢ € [0, 10). Since ¢ is not unique, find values of ¢ with ¢ € [—10,0)
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and ¢ € [10,20). Graph the model. In addition, repeat this process for the
cosine model

y(t) = A+ B cos(w(t — ¢2)).

Solution: The vertical shift, A, is the average of the high and low points of
the data, so
_ 26414 _
A= 231 _ 9

The amplitude, B, is the distance from the maximum to the average, so
B =26-20=6.

Since the period is T' = 10 years, the frequency, w, satisfies

_ 27 _
W=7~

e

Note that the times of the maximum and minimum are separated by half a
period. This will always be the case of our sine and cosine models.
We are given that the maximum of 26 occurs at ¢ = 2, so the model
satisfies:
y(2) =26 =20+ 6 sin (Z(2—9)) .

From this equation it is clear that
sin (2(2—¢)) = 1.

Recall that the sine function is at its maximum with value one when its
argument is 7, so

™

5(2—¢) =
2_¢ = %7
o = 3

This value of ¢ is not in the interval [0, 10), but the periodicity, 7' = 10, of
the model is also reflected in the phase shift, ¢. We can write

¢ = —% + 10 n, n an integer
¢ = ..—10.5,—0.5,9.5,19.5, ...

with the principle phase shift being ¢ = 9.5. It follows that we can write
the sine model
y(t) =20+ 6 sin (£(t —9.5)),



24 CHAPTER 2. TRIGONOMETRY

y(t) = 20 + 6 sin(m(t — 9.5)/5)
30 T T :

10 ; ;
-10 -5 0 5 10
t (years)

Figure 8: Graph of the model y(t) = 20 + 6 sin(w(t — 9.5)/5) of Example 7.

and its graph is given in Figure 8. From the formula for ¢, we could also
use phase shifts of ¢ = —% or ¢ = 19.5.
The cosine model has the form

y(t) =20 +6 cos (Z(t — ¢2)) ,

where the vertical shift, amplitude, and frequency match the sine model. It
remains to find the phase shift, ¢s. The maximum of the cosine function
occurs when its argument is 0, so

%(2 —¢2) = 0,
P2 = 2.
It follows that the cosine model satisfies
y(t) =20+ 6 cos (£(t —2)).
By periodicity of the phase shift, we have

$2 = 2+10n, n an integer
¢ = ..—8,2,12,22, ..

where the principle phase shift is ¢o = 2. N
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1.8 BODY TEMPERATURE

Humans, like many organisms, undergo circadian rhythms for many of their
bodily functions. Circadian rhythms are the daily fluctuations that are
driven by the light/dark cycle of the Earth, which seems to affect the pineal
gland in the head. The average body temperature for a human is about
37°C. However, this temperature normally varies a few tenths of a degree in
each individual with distinct regularity. The body is usually at its hottest
around 10 or 11 AM and at its coolest in the late evening, which helps
encourage sleep.
Suppose that measurements on a particular individual show that he has
a high body temperature of 37.1°C at 10 am. He has a low body temperature
of 36.7°C at 10 pm. Assume that his body temperature, T'(t), satisfies the
following equation,
T(t) = A+ B cos(w(t — ¢)), (2.6)

for some parameters A, B, w, and ¢. Use the data above to find the four
parameters with B > 0, w > 0, and ¢ € [0,24). We show how to select
reasonable parameter values for this cosine model. We also create the sine
model.

Solution: In this problem, we know that one day is 24 hours, so the period
of the function is 24. (Be careful not to confuse the temperature 7'(¢) with
our previous notation of T as the period.) The frequency is given by

2o
w=or =15
As seen in our examples above, the parameter A represents the aver-
age temperature of the body. The mean (average) temperature is half-way

between the extreme values, so

L 3T 0—536.7 C _ a5000.

The difference between the maximum and the average temperature gives
the amplitude of variation in the body temperature. We can see that the
difference from the mean to the maximum (or the minimum) is 0.2°C, which
is the amplitude of this trigonometric model, B.

Last, the phase will determine at what time the highest point occurs.
The cosine function has its maximum when its argument is 0 (or any integer
multiple of 27). Since the highest body temperature occurs at ¢t = 10, we
find the appropriate phase shift by solving

w(l0—¢) =0 or ¢ = 10.
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Body Temperature
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Figure 9: Graph of the body temperature.

It follows that the phase shift is given by ¢ = 10.
Using these values for the parameters in the Equation (2.6) results in an
equation modeling the temperature of the body at a given time,

T(t) = 36.9+ 0.2 cos (L (t — 10)),

which is shown graphically in Figure 9. We see from the graph of Figure 9
that the maximum is 37.1°C, and it is shifted to 10 AM, a time when most
of us are becoming active. The minimum occurs at 10 PM. A tendency
of this minimum to be delayed in adolescence can result in sleep disorders,
abnormal sleep patterns, and chronic sleep deprivation.
If the body temperature is modeled by a sine function of the form
T(t) = A+ B sin(w(t — ¢2)),
then the parameters A = 36.9, B = 0.2, and w = 5, the same as for the

120
cosine model. It only remains to find the phase shift, ¢2. As seen before,

the phase shift for the sine model is a quarter period less than the one for
the cosine model. From our formula above,

$r =10 — = =10 — 6 = 4.
2w

Thus, the equivalent sine model is given by

T(t) = 36.9 + 0.2 sin (5 (t — 4)) .
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1.9 EXERCISES

27

1. Complete the following table. Do NOT use a calculator! When the value
for the sine or cosine function is given, state all possible solutions for the

angles with 0 < x < 27 or 0 < 6 < 360°.

radian (x) | degree (0) sin(x) cos(z)
3
4
_1
2
330°
_V3
2
10
3
/
2
210°
-1
_ 5
4
0
270°
_1
2

Sketch a graph of the following trigonometric functions for —27 < x < 27.

Give the period of the function.
2. y(x) = 3cos(2x)
4. y(z) =1+ 3cos(2z)
6. y(r) = 2sin(4z) + 1

8. y(x) =2 — cos(2(z —m))

3. y(z) =2 — 4sin(3x)
5. y(x) = 4sin (%)
7. y(z) =5 —2cos (%)

9. y(z) =2sin (3 (z+ 3))

10. For each of the following problems (see 7 and 8 above) find an equivalent

model of the form

y(x) = A+ B cos(w(z — ),
where the amplitude, B > 0, and the principle phase shift, ¢ € [0,T") with

T being the period of the function.

a. y(z) =5—2cos (%) b. y(x) =2 — cos(2(x — ))
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11. For each of the following problems (see 3 and 9 above) find an equivalent
model of the form

y(@) = A+ B sin(w(x — 9)),

where the amplitude, B > 0, and the principle phase shift, ¢ € [0,7") with
T being the period of the function.

a. y(xr) =2 — 4sin(3z) b. y(z) = 2sin (3 (z + 7))

12. The lungs do not completely empty or completely fill in normal breath-
ing. The volume of the lungs normally varies between 2200 ml and 2800 ml
with a breathing rate of 24 breaths/min. This exchange of air is called the
tidal volume. One approximation for the volume of air in the lungs uses the
cosine function written in the following manner,

V(t) = A+ Bcos(wt),

where A, B, and w are constants and ¢ is in minutes. Use the data above to
create a model, i.e., find A, B, and w that simulates the normal breathing of
an individual for one minute. Graph the function for 10 sec., clearly showing
the maximum and minimum volumes, and frequency of inhalation.

13. a. The heart pumps blood at a regular rate of about 60 pulses per minute.
The heart volume is about 140 ml, and it pushes out about 1/2 its volume
(70 ml) with each beat. Use a model of the following form to simulate the
volume of blood, B(t), in the heart at any time ¢,

B(t) = a + b sin(wt),

where a, b, and w are constants and ¢ is in minutes. Sketch a graph of this
function for 5 sec., clearly showing the maximum and minimum volumes,
and frequency of the beating heart.

b. When the heart pushes out blood, the pressure, P(t), in the aorta
and arterioles increases to 120 mm Hg. When the heart fills with blood, the
pressure falls to about 80 mm Hg. Use a similar model of the form

P(t) = ¢+ d sin(wt),

where ¢, d, and w are constants with d and w positive and ¢ is in minutes.
Again you sketch a graph of this function for 5 sec., clearly showing the
maximum and minimum volumes, and frequency of the beating heart.
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c. Consider your answer in Part b, and determine an equivalent model
of the form
P(t) =C + D cos(v(t — ¢)),
where D > 0, v > 0, and ¢ € [0,7) with T being the period of the heart.
Relate your constants in this model to the one in Part b.

14. The average body temperature for a human is about 37°C. However, this
temperature normally varies a few tenths of a degree in each individual with
distinct regularity. The body is usually at its hottest around 10 or 11 am
and at its coolest in the late evening, which helps encourage sleep. When
an individual switches to night shift work, his body temperature cycle has
to switch also.

a. Suppose that a worker on the night shift finds his hottest body tem-
perature to be at 2 am with a body temperature of 37.1°C, then 12 hours
later his body temperature achieves a minimum of 36.7°C. Assume that the
body temperature can be modeled using a trigonometric function and is
given by

T(t) = A+ Bcos(w(t — ¢)),
where A, B > 0, w > 0, and ¢ € [0,24) are constants and ¢ is in hours.
Use the data above to find the four parameters, then sketch a graph for the

temperature of this individual for one day.
b. Determine an equivalent temperature model of the form

T(t) = C+ D sin(v(t — 1)),

where D > 0, v > 0, and 9 € [0,24). Relate your constants in this model
to the one above. Also, find a value of the phase shift ¢ € [—24,0), which
produces an equivalent model.

15. a. Iguanas are cold-blooded or ectothermic organisms with their body
temperature depending on the external temperature. (See www.anapsid.org
for more information.) Their natural habitat lies near the equator, where
the sun shines about 12 hours a day. The iguana’s temperature cycles during
the day, with a low of 75°F at about 3 am and a high of 104°F at about
3 pm. Assume that the body temperature of an iguana can be modeled
using the following function,

T(t) = A+ Bsin(w(t — ¢)),

where A, B, w, and ¢ are constants and ¢ is in hours. Use the data above
to find the four parameters, then sketch a graph for the temperature of a
typical iguana for one day.
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b. A temperature of 88°F for at least 12 hours a day is critical for the
health of an iguana. About how many hours a day does your iguana model
give this temperature? (Use the graph which you have created to make a
reasonable estimate.)

c. Determine an equivalent temperature model of the form

T(t) =C+ D cos(v(t — 1)),

where D > 0, v > 0, and 9 € [0,24). Relate your constants in this model
to the one above. Also, find a value of the phase shift ¢ € [—24,0), which
produces an equivalent model.

16. During the human female menstrual cycle, the gonadotropin, FSH or
follicle stimulating hormone, is released from the pituitary in a sinusoidal
manner with a period of approximately 28 days. Guyton’s text on Medical
Physiology [1] shows that if we define day 0 (¢ = 0) as the beginning of
menstruation, then FSH, F(t), cycles with a high concentration of about 4
(“relative units”) around day 9 and a low concentration of about 1.5 around
day 23.

a. Consider a model of the concentration FSH (in “relative units”) given
by,

F(t) = A+ Bcos(w(t — ¢)),

where A, B, w, and ¢ are constants and ¢ is in days. Use the data above
to find the four parameters, then sketch a graph for the concentration of
FSH over one period. If ovulation occurs around day 14, then what is the

approximate concentration of FSH at that time?
b. Determine an equivalent FSH model of the form

F(t) =C + D sin(v(t — v)),

where D > 0, v > 0, and ¢ € [0,28). Relate your constants in this model
to the one above. Also, find a value of the phase shift ¢) € [28,56), which
produces an equivalent model.
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