Calculus for the Life Sciences II
 Lecture Notes－Trigonometric Functions

Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉

Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego，CA 92182－7720
http：／／www－rohan．sdsu．edu／～jmahaffy
Fall 2012

Outline

(1) Introduction
(2) Annual Temperature Cycles

- San Diego and Chicago

Trigonometric Functions

- Basic Trig Functions
- Radian Measure
- Sine and Cosine
- Properties of Sine and Cosine
- Identities
(4) Trigonometric Models
- Vertical Shift and Amplitude
- Frequency and Period
- Phase Shift
- Examples
- Phase Shift of Half a Period
- Equivalent Sine and Cosine Models
- Return to Annual Temperature Variation
- Other Examples

Introduction - Trigonometric Functions

Introduction - Trigonometric Functions

- Many phenomena in biology appear in cycles

Introduction - Trigonometric Functions

Introduction - Trigonometric Functions

- Many phenomena in biology appear in cycles
- Natural physical cycles

Introduction - Trigonometric Functions

Introduction - Trigonometric Functions

- Many phenomena in biology appear in cycles
- Natural physical cycles
- Daily cycle of light
- Annual cycle of the seasons

Introduction - Trigonometric Functions

Introduction - Trigonometric Functions

- Many phenomena in biology appear in cycles
- Natural physical cycles
- Daily cycle of light
- Annual cycle of the seasons
- Oscillations are often modeled using trigonometric functions

Annual Temperature Cycles

Annual Temperature Cycles

- Weather reports give the average temperature for a day

Annual Temperature Cycles

Annual Temperature Cycles

- Weather reports give the average temperature for a day
- Long term averages help researchers predict effects of global warming over the background noise of annual variation

Annual Temperature Cycles

Annual Temperature Cycles

- Weather reports give the average temperature for a day
- Long term averages help researchers predict effects of global warming over the background noise of annual variation
- There are seasonal differences in the average daily temperature
- Higher averages in the summer
- Lower averages in the winter

Modeling Annual Temperature Cycles

Modeling Annual Temperature Cycles

- What mathematical tools can help predict the annual temperature cycles?

Modeling Annual Temperature Cycles

Modeling Annual Temperature Cycles

- What mathematical tools can help predict the annual temperature cycles?
- Polynomials and exponentials do not exhibit the periodic behavior

Modeling Annual Temperature Cycles

Modeling Annual Temperature Cycles

- What mathematical tools can help predict the annual temperature cycles?
- Polynomials and exponentials do not exhibit the periodic behavior
- Trigonometric functions exhibit periodicity

Average Temperatures for San Diego and Chicago

Average Temperatures for San Diego and Chicago: Table of the monthly average high and low temperatures for San Diego and Chicago

Month	Jan	Feb	Mar	Apr	May	Jun
San Diego	$66 / 49$	$67 / 51$	$66 / 53$	$68 / 56$	$69 / 59$	$72 / 62$
Chicago	$29 / 13$	$34 / 17$	$46 / 29$	$59 / 39$	$70 / 48$	$80 / 58$
Month	Jul	Aug	Sep	Oct	Nov	Dec
San Diego	$76 / 66$	$78 / 68$	$77 / 66$	$75 / 61$	$70 / 54$	$66 / 49$
Chicago	$84 / 63$	$82 / 62$	$75 / 54$	$63 / 42$	$48 / 32$	$\mathbf{3 4 / 1 9}$

5050

Average Temperatures for San Diego and Chicago

Graph of Temperature for San Diego and Chicago with best fitting trigonometric functions

Temperatures for San Diego and Chicago

Average Temperatures for San Diego and Chicago

Models of Annual Temperature Cycles for San Diego and Chicago

- The two graphs have similarities and differences

Average Temperatures for San Diego and Chicago

Models of Annual Temperature Cycles for San Diego and Chicago

- The two graphs have similarities and differences
- Same seasonal period as expected

Average Temperatures for San Diego and Chicago

Models of Annual Temperature Cycles for San Diego and Chicago

- The two graphs have similarities and differences
- Same seasonal period as expected
- Seasonal variation or amplitude of oscillation for Chicago is much greater than San Diego

Average Temperatures for San Diego and Chicago

Models of Annual Temperature Cycles for San Diego and Chicago

- The two graphs have similarities and differences
- Same seasonal period as expected
- Seasonal variation or amplitude of oscillation for Chicago is much greater than San Diego
- Overall average temperature for San Diego is greater than the average for Chicago

Average Temperatures for San Diego and Chicago

Models of Annual Temperature Cycles for San Diego and Chicago

- The two graphs have similarities and differences
- Same seasonal period as expected
- Seasonal variation or amplitude of oscillation for Chicago is much greater than San Diego
- Overall average temperature for San Diego is greater than the average for Chicago
- Overlying models use cosine functions

Basic Trig Functions
Radian Measure
Sine and Cosine
Properties of Sine and Cosine
Identities

Trigonometric Functions

Trigonometric Functions are often called circular functions

Trigonometric Functions

Trigonometric Functions are often called circular functions

- Let (x, y) be a point on a circle of radius r centered at the origin

Trigonometric Functions

Trigonometric Functions are often called circular functions

－Let (x, y) be a point on a circle of radius r centered at the origin
－Define the angle θ between the ray connecting the point to the origin and the x－axis

Basic Trig Functions
Radian Measure
Sine and Cosine
Properties of Sine and Cosine
Identities

Trigonometric Functions

Trig Functions－ 6 basic Trigonometric functions

Basic Trig Functions
Radian Measure
Sine and Cosine
Properties of Sine and Cosine
Identities

Trigonometric Functions

Trig Functions - 6 basic Trigonometric functions

$$
\sin (\theta)=\frac{y}{r} \quad \cos (\theta)=\frac{x}{r} \quad \tan (\theta)=\frac{y}{x}
$$

Basic Trig Functions
Radian Measure
Sine and Cosine
Properties of Sine and Cosine
Identities

Trigonometric Functions

Trig Functions - 6 basic Trigonometric functions

$$
\begin{array}{lll}
\sin (\theta)=\frac{y}{r} & \cos (\theta)=\frac{x}{r} & \tan (\theta)=\frac{y}{x} \\
\csc (\theta)=\frac{r}{y} & \sec (\theta)=\frac{r}{x} & \cot (\theta)=\frac{x}{y}
\end{array}
$$

Basic Trig Functions
Radian Measure
Sine and Cosine
Properties of Sine and Cosine
Identities

Trigonometric Functions

Trig Functions - 6 basic Trigonometric functions

$$
\begin{array}{lll}
\sin (\theta)=\frac{y}{r} & \cos (\theta)=\frac{x}{r} & \tan (\theta)=\frac{y}{x} \\
\csc (\theta)=\frac{r}{y} & \sec (\theta)=\frac{r}{x} & \cot (\theta)=\frac{x}{y}
\end{array}
$$

We will concentrate almost exclusively on the sine and cosine ${ }_{\bar{F}}$

Introduction
Annual Temperature Cycles
Trigonometric Functions
Trigonometric Models

Basic Trig Functions
Radian Measure
Sine and Cosine
Properties of Sine and Cosine Identities

Radian Measure

Radian Measure

－Most trigonometry starts using degrees to measure an angle

Introduction
Annual Temperature Cycles
Trigonometric Functions
Trigonometric Models

```
Basic Trig Functions
Radian Measure
Sine and Cosine
Properties of Sine and Cosine
Identities
```


Radian Measure

Radian Measure

- Most trigonometry starts using degrees to measure an angle
- This is not the appropriate unit to use in Calculus

```
Basic Trig Functions
Radian Measure
Sine and Cosine
Properties of Sine and Cosine
Identities
```


Radian Measure

Radian Measure

- Most trigonometry starts using degrees to measure an angle
- This is not the appropriate unit to use in Calculus
- The radian measure of the angle uses the unit circle

```
Basic Trig Functions
Radian Measure
Sine and Cosine
Properties of Sine and Cosine
Identities
```


Radian Measure

Radian Measure

- Most trigonometry starts using degrees to measure an angle
- This is not the appropriate unit to use in Calculus
- The radian measure of the angle uses the unit circle
- The distance around the perimeter of the unit circle is 2π

Radian Measure

Radian Measure

－Most trigonometry starts using degrees to measure an angle
－This is not the appropriate unit to use in Calculus
－The radian measure of the angle uses the unit circle
－The distance around the perimeter of the unit circle is 2π
－The radian measure of the angle θ is simply the distance along the circumference of the unit circle

Radian Measure

Radian Measure

－Most trigonometry starts using degrees to measure an angle
－This is not the appropriate unit to use in Calculus
－The radian measure of the angle uses the unit circle
－The distance around the perimeter of the unit circle is 2π
－The radian measure of the angle θ is simply the distance along the circumference of the unit circle
－A 45° angle is $\frac{1}{8}$ the distance around the unit circle or $\frac{\pi}{4}$ radians

```
Basic Trig Functions

\section*{Radian Measure}

\section*{Radian Measure}
－Most trigonometry starts using degrees to measure an angle
－This is not the appropriate unit to use in Calculus
－The radian measure of the angle uses the unit circle
－The distance around the perimeter of the unit circle is \(2 \pi\)
－The radian measure of the angle \(\theta\) is simply the distance along the circumference of the unit circle
－A \(45^{\circ}\) angle is \(\frac{1}{8}\) the distance around the unit circle or \(\frac{\pi}{4}\) radians
－ \(90^{\circ}\) and \(180^{\circ}\) angles convert to \(\frac{\pi}{2}\) and \(\pi\) radians

\section*{Radian Measure}

\section*{Radian Measure}
- Most trigonometry starts using degrees to measure an angle
- This is not the appropriate unit to use in Calculus
- The radian measure of the angle uses the unit circle
- The distance around the perimeter of the unit circle is \(2 \pi\)
- The radian measure of the angle \(\theta\) is simply the distance along the circumference of the unit circle
- A \(45^{\circ}\) angle is \(\frac{1}{8}\) the distance around the unit circle or \(\frac{\pi}{4}\) radians
- \(90^{\circ}\) and \(180^{\circ}\) angles convert to \(\frac{\pi}{2}\) and \(\pi\) radians
- Conversions
\[
1^{\circ}=\frac{\pi}{180}=0.01745 \text { radians } \quad \text { or } 1 \text { radian }=\frac{180^{\circ}}{\pi}=57.296^{\circ} \text { SOSO }
\]

\section*{Sine and Cosine}

Sine and Cosine: The unit circle has \(r=1\), so the trig functions sine and cosine satisfy
\[
\cos (\theta)=x \quad \text { and } \quad \sin (\theta)=y
\]
- The formula for cosine (cos) gives the \(x\) value of the angle, \(\theta\), (measured in radians)

\section*{Sine and Cosine}

Sine and Cosine: The unit circle has \(r=1\), so the trig functions sine and cosine satisfy
\[
\cos (\theta)=x \quad \text { and } \quad \sin (\theta)=y
\]
- The formula for cosine ( \(\cos\) ) gives the \(x\) value of the angle, \(\theta\), (measured in radians)
- The formula for sine \((\sin )\) gives the \(y\) value of the angle, \(\theta\)

\section*{Sine and Cosine}

Sine and Cosine: The unit circle has \(r=1\), so the trig functions sine and cosine satisfy
\[
\cos (\theta)=x \quad \text { and } \quad \sin (\theta)=y
\]
- The formula for cosine (cos) gives the \(x\) value of the angle, \(\theta\), (measured in radians)
- The formula for sine ( \(\sin\) ) gives the \(y\) value of the angle, \(\theta\)
- The tangent function (tan) gives the slope of the line \((y / x)\)

\section*{Sine and Cosine}

Graph of \(\sin (\theta)\) and \(\cos (\theta)\) for angles \(\theta \in[-2 \pi, 2 \pi]\)
Sine and Cosine in Radians

```

Basic Trig Functions
Radian Measure
Sine and Cosine
Properties of Sine and Cosine
Identities

```

\section*{Sine and Cosine}

\section*{Sine and Cosine - Periodicity and Bounded}
- Notice the \(2 \pi\) periodicity or the functions repeat the same pattern every \(2 \pi\) radians

\section*{Sine and Cosine}

\section*{Sine and Cosine - Periodicity and Bounded}
- Notice the \(2 \pi\) periodicity or the functions repeat the same pattern every \(2 \pi\) radians
- This is clear from the circle because every time you go \(2 \pi\) radians around the circle, you return to the same point

\section*{Sine and Cosine}

\section*{Sine and Cosine - Periodicity and Bounded}
- Notice the \(2 \pi\) periodicity or the functions repeat the same pattern every \(2 \pi\) radians
- This is clear from the circle because every time you go \(2 \pi\) radians around the circle, you return to the same point
- Note that both the sine and cosine functions are bounded between -1 and 1

Introduction

\section*{Annual Temperature Cycles}

Trigonometric Functions
Trigonometric Models

Basic Trig Functions
Radian Measure
Sine and Cosine
Properties of Sine and Cosine Identities

\section*{Sine and Cosine}

\section*{Sine－Maximum and Minimum}

っのく

Basic Trig Functions Radian Measure Sine and Cosine Properties of Sine and Cosine Identities

\section*{Sine and Cosine}

\section*{Sine - Maximum and Minimum}
- The sine function has its maximum value at \(\frac{\pi}{2}\) with \(\sin (\pi / 2)=1\)

\section*{Sine and Cosine}

\section*{Sine - Maximum and Minimum}
- The sine function has its maximum value at \(\frac{\pi}{2}\) with \(\sin (\pi / 2)=1\)
- By periodicity, \(\sin (x)=1\) for \(x=\frac{\pi}{2}+2 n \pi\) for any integer \(n\)

\section*{Sine and Cosine}

\section*{Sine - Maximum and Minimum}
- The sine function has its maximum value at \(\frac{\pi}{2}\) with \(\sin (\pi / 2)=1\)
- By periodicity, \(\sin (x)=1\) for \(x=\frac{\pi}{2}+2 n \pi\) for any integer \(n\)
- The sine function has its minimum value at \(\frac{3 \pi}{2}\) with \(\sin (3 \pi / 2)=-1\)

\section*{Sine and Cosine}

\section*{Sine - Maximum and Minimum}
- The sine function has its maximum value at \(\frac{\pi}{2}\) with \(\sin (\pi / 2)=1\)
- By periodicity, \(\sin (x)=1\) for \(x=\frac{\pi}{2}+2 n \pi\) for any integer \(n\)
- The sine function has its minimum value at \(\frac{3 \pi}{2}\) with \(\sin (3 \pi / 2)=-1\)
- By periodicity, \(\sin (x)=-1\) for \(x=\frac{3 \pi}{2}+2 n \pi\) for any integer \(n\)

Introduction

\section*{Annual Temperature Cycles}

Trigonometric Functions
Trigonometric Models

Basic Trig Functions
Radian Measure
Sine and Cosine
Properties of Sine and Cosine Identities

\section*{Sine and Cosine}

\author{
Cosine - Maximum and Minimum
}
๑) \(a \curvearrowright\)

Basic Trig Functions Radian Measure Sine and Cosine Properties of Sine and Cosine Identities

\section*{Sine and Cosine}

Cosine - Maximum and Minimum
- The cosine function has its maximum value at 0 with \(\cos (0)=1\)

\section*{Sine and Cosine}

Cosine - Maximum and Minimum
- The cosine function has its maximum value at 0 with \(\cos (0)=1\)
- By periodicity, \(\cos (x)=1\) for \(x=2 n \pi\) for any integer \(n\)

\section*{Sine and Cosine}

Cosine - Maximum and Minimum
- The cosine function has its maximum value at 0 with \(\cos (0)=1\)
- By periodicity, \(\cos (x)=1\) for \(x=2 n \pi\) for any integer \(n\)
- The cosine function has its minimum value at \(\pi\) with \(\cos (\pi)=-1\)

\section*{Sine and Cosine}

Cosine - Maximum and Minimum
- The cosine function has its maximum value at 0 with \(\cos (0)=1\)
- By periodicity, \(\cos (x)=1\) for \(x=2 n \pi\) for any integer \(n\)
- The cosine function has its minimum value at \(\pi\) with \(\cos (\pi)=-1\)
- By periodicity, \(\cos (x)=-1\) for \(x=(2 n+1) \pi\) for any integer \(n\)

\section*{Sine and Cosine}

\section*{Table of Some Important Values of Trig Functions}
\begin{tabular}{|c|c|c|}
\hline\(x\) & \(\sin (x)\) & \(\cos (x)\) \\
\hline 0 & 0 & 1 \\
\hline\(\frac{\pi}{6}\) & \(\frac{1}{2}\) & \(\frac{\sqrt{3}}{2}\) \\
\hline\(\frac{\pi}{4}\) & \(\frac{\sqrt{2}}{2}\) & \(\frac{\sqrt{2}}{2}\) \\
\hline\(\frac{\pi}{3}\) & \(\frac{\sqrt{3}}{2}\) & \(\frac{1}{2}\) \\
\hline\(\frac{\pi}{2}\) & 1 & 0 \\
\hline\(\pi\) & 0 & -1 \\
\hline\(\frac{3 \pi}{2}\) & -1 & 0 \\
\hline \(2 \pi\) & 0 & 1 \\
\hline
\end{tabular}

Basic Trig Functions
Radian Measure
Sine and Cosine
Properties of Sine and Cosine Identities

\section*{Properties of Sine and Cosine}

Properties of Cosine
- Periodic with period \(2 \pi\)

Basic Trig Functions
Radian Measure
Sine and Cosine
Properties of Sine and Cosine Identities

\section*{Properties of Sine and Cosine}

\section*{Properties of Cosine}
- Periodic with period \(2 \pi\)
- Cosine is an even function

Basic Trig Functions
Radian Measure
Sine and Cosine
Properties of Sine and Cosine Identities

\section*{Properties of Sine and Cosine}

\section*{Properties of Cosine}
－Periodic with period \(2 \pi\)
－Cosine is an even function
－Cosine is bounded by -1 and 1

\section*{Properties of Sine and Cosine}

\section*{Properties of Cosine}
－Periodic with period \(2 \pi\)
－Cosine is an even function
－Cosine is bounded by -1 and 1
－Maximum at \(x=0, \cos (0)=1\)

\section*{Properties of Sine and Cosine}

\section*{Properties of Cosine}
- Periodic with period \(2 \pi\)
- Cosine is an even function
- Cosine is bounded by -1 and 1
- Maximum at \(x=0, \cos (0)=1\)
- By periodicity, other maxima at \(x_{n}=2 n \pi\) with \(\cos (2 n \pi)=1\) ( \(n\) any integer)

\section*{Properties of Sine and Cosine}

\section*{Properties of Cosine}
- Periodic with period \(2 \pi\)
- Cosine is an even function
- Cosine is bounded by -1 and 1
- Maximum at \(x=0, \cos (0)=1\)
- By periodicity, other maxima at \(x_{n}=2 n \pi\) with \(\cos (2 n \pi)=1\) ( \(n\) any integer)
- Minimum at \(x=\pi, \cos (\pi)=-1\)

\section*{Properties of Sine and Cosine}

\section*{Properties of Cosine}
- Periodic with period \(2 \pi\)
- Cosine is an even function
- Cosine is bounded by -1 and 1
- Maximum at \(x=0, \cos (0)=1\)
- By periodicity, other maxima at \(x_{n}=2 n \pi\) with \(\cos (2 n \pi)=1\) ( \(n\) any integer)
- Minimum at \(x=\pi, \cos (\pi)=-1\)
- By periodicity, other minima at \(x_{n}=(2 n+1) \pi\) with \(\cos \left(x_{n}\right)=-1(n\) any integer \()\)

\section*{Properties of Sine and Cosine}

Properties of Cosine
－Periodic with period \(2 \pi\)
－Cosine is an even function
－Cosine is bounded by -1 and 1
－Maximum at \(x=0, \cos (0)=1\)
－By periodicity，other maxima at \(x_{n}=2 n \pi\) with \(\cos (2 n \pi)=1\)（ \(n\) any integer）
－Minimum at \(x=\pi, \cos (\pi)=-1\)
－By periodicity，other minima at \(x_{n}=(2 n+1) \pi\) with \(\cos \left(x_{n}\right)=-1\)（ \(n\) any integer）
－Zeroes of cosine separated by \(\pi\) with \(\cos \left(x_{n}\right)=0\) when \(x_{n}=\frac{\pi}{2}+n \pi\)（ \(n\) any integer）

Basic Trig Functions
Radian Measure
Sine and Cosine
Properties of Sine and Cosine Identities

Properties of Sine and Cosine
Properties of Sine
－Periodic with period \(2 \pi\)

Basic Trig Functions
Radian Measure
Sine and Cosine
Properties of Sine and Cosine Identities

\section*{Properties of Sine}
－Periodic with period \(2 \pi\)
－Sine is an odd function

Basic Trig Functions
Radian Measure
Sine and Cosine
Properties of Sine and Cosine Identities

\section*{Properties of Sine and Cosine}

Properties of Sine
－Periodic with period \(2 \pi\)
－Sine is an odd function
－Sine is bounded by -1 and 1

\section*{Properties of Sine and Cosine}

Properties of Sine
－Periodic with period \(2 \pi\)
－Sine is an odd function
－Sine is bounded by -1 and 1
－Maximum at \(x=\frac{\pi}{2}, \sin \left(\frac{\pi}{2}\right)=1\)

\section*{Properties of Sine and Cosine}

Properties of Sine
－Periodic with period \(2 \pi\)
－Sine is an odd function
－Sine is bounded by -1 and 1
－Maximum at \(x=\frac{\pi}{2}, \sin \left(\frac{\pi}{2}\right)=1\)
－By periodicity，other maxima at \(x_{n}=\frac{\pi}{2}+2 n \pi\) with \(\sin \left(x_{n}\right)=1\)（ \(n\) any integer）

\section*{Properties of Sine and Cosine}

Properties of Sine
- Periodic with period \(2 \pi\)
- Sine is an odd function
- Sine is bounded by -1 and 1
- Maximum at \(x=\frac{\pi}{2}, \sin \left(\frac{\pi}{2}\right)=1\)
- By periodicity, other maxima at \(x_{n}=\frac{\pi}{2}+2 n \pi\) with \(\sin \left(x_{n}\right)=1\) ( \(n\) any integer)
- Minimum at \(x=\frac{3 \pi}{2}, \sin \left(\frac{3 \pi}{2}\right)=-1\)

\section*{Properties of Sine and Cosine}

Properties of Sine
- Periodic with period \(2 \pi\)
- Sine is an odd function
- Sine is bounded by -1 and 1
- Maximum at \(x=\frac{\pi}{2}, \sin \left(\frac{\pi}{2}\right)=1\)
- By periodicity, other maxima at \(x_{n}=\frac{\pi}{2}+2 n \pi\) with \(\sin \left(x_{n}\right)=1\) ( \(n\) any integer)
- Minimum at \(x=\frac{3 \pi}{2}, \sin \left(\frac{3 \pi}{2}\right)=-1\)
- By periodicity, other minima at \(x_{n}=\frac{3 \pi}{2}+2 n \pi\) with \(\sin \left(x_{n}\right)=-1(n\) any integer \()\)

\section*{Properties of Sine and Cosine}

Properties of Sine
- Periodic with period \(2 \pi\)
- Sine is an odd function
- Sine is bounded by -1 and 1
- Maximum at \(x=\frac{\pi}{2}, \sin \left(\frac{\pi}{2}\right)=1\)
- By periodicity, other maxima at \(x_{n}=\frac{\pi}{2}+2 n \pi\) with \(\sin \left(x_{n}\right)=1\) ( \(n\) any integer)
- Minimum at \(x=\frac{3 \pi}{2}, \sin \left(\frac{3 \pi}{2}\right)=-1\)
- By periodicity, other minima at \(x_{n}=\frac{3 \pi}{2}+2 n \pi\) with \(\sin \left(x_{n}\right)=-1\) ( \(n\) any integer)
- Zeroes of sine separated by \(\pi\) with \(\sin \left(x_{n}\right)=0\) when \(x_{n}=n \pi\) ( \(n\) any integer)

Introduction
Annual Temperature Cycles
Trigonometric Functions
Trigonometric Models

Basic Trig Functions
Radian Measure
Sine and Cosine
Properties of Sine and Cosine
Identities

\section*{Some Identities for Sine and Cosine}

\section*{Some Identities for Cosine and Sine}

Basic Trig Functions
Radian Measure
Sine and Cosine
Properties of Sine and Cosine Identities

\section*{Some Identities for Sine and Cosine}

\section*{Some Identities for Cosine and Sine}
－ \(\cos ^{2}(x)+\sin ^{2}(x)=1\) for all values of \(x\)

\section*{Some Identities for Sine and Cosine}

\section*{Some Identities for Cosine and Sine}
- \(\cos ^{2}(x)+\sin ^{2}(x)=1\) for all values of \(x\)
- Adding and Subtracting angles for cosine
\[
\begin{aligned}
& \cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y) \\
& \cos (x-y)=\cos (x) \cos (y)+\sin (x) \sin (y)
\end{aligned}
\]

\section*{Some Identities for Sine and Cosine}

\section*{Some Identities for Cosine and Sine}
- \(\cos ^{2}(x)+\sin ^{2}(x)=1\) for all values of \(x\)
- Adding and Subtracting angles for cosine
\[
\begin{aligned}
& \cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y) \\
& \cos (x-y)=\cos (x) \cos (y)+\sin (x) \sin (y)
\end{aligned}
\]
- Adding and Subtracting angles for sine
\[
\begin{aligned}
& \sin (x+y)=\sin (x) \cos (y)+\cos (x) \sin (y) \\
& \sin (x-y)=\sin (x) \cos (y)-\cos (x) \sin (y)
\end{aligned}
\]

Introduction
Annual Temperature Cycles
Trigonometric Functions
Trigonometric Models

Basic Trig Functions
Radian Measure
Sine and Cosine
Properties of Sine and Cosine
Identities

\section*{Example of Shifts}

Example of Shifts for Sine and Cosine:
Use the trigonometric identities to show

Basic Trig Functions
Radian Measure
Sine and Cosine
Properties of Sine and Cosine
Identities

\section*{Example of Shifts}

Example of Shifts for Sine and Cosine:
Use the trigonometric identities to show
- \(\cos (x)=\sin \left(x+\frac{\pi}{2}\right)\)

Basic Trig Functions
Radian Measure
Sine and Cosine
Properties of Sine and Cosine
Identities

\section*{Example of Shifts}

Example of Shifts for Sine and Cosine:
Use the trigonometric identities to show
- \(\cos (x)=\sin \left(x+\frac{\pi}{2}\right)\)
- \(\sin (x)=\cos \left(x-\frac{\pi}{2}\right)\)

\section*{Example of Shifts}

Example of Shifts for Sine and Cosine:
Use the trigonometric identities to show
- \(\cos (x)=\sin \left(x+\frac{\pi}{2}\right)\)
- \(\sin (x)=\cos \left(x-\frac{\pi}{2}\right)\)

The first example shows the cosine is the same as the sine function shifted to the left by \(\frac{\pi}{2}\)

\section*{Example of Shifts}

\section*{Example of Shifts for Sine and Cosine:}

Use the trigonometric identities to show
- \(\cos (x)=\sin \left(x+\frac{\pi}{2}\right)\)
- \(\sin (x)=\cos \left(x-\frac{\pi}{2}\right)\)

The first example shows the cosine is the same as the sine function shifted to the left by \(\frac{\pi}{2}\)

The second example shows the sine is the same as the cosine function shifted to the right by \(\frac{\pi}{2}\)

Introduction
Annual Temperature Cycles
Trigonometric Functions
Trigonometric Models

Basic Trig Functions
Radian Measure
Sine and Cosine
Properties of Sine and Cosine Identities

\section*{Example of Shifts}

Solution: We begin by using the additive identity for sine

Basic Trig Functions
Radian Measure
Sine and Cosine
Properties of Sine and Cosine
Identities

\section*{Example of Shifts}

Solution: We begin by using the additive identity for sine
\[
\sin \left(x+\frac{\pi}{2}\right)=\sin (x) \cos \left(\frac{\pi}{2}\right)+\cos (x) \sin \left(\frac{\pi}{2}\right)
\]

Basic Trig Functions
Radian Measure
Sine and Cosine
Properties of Sine and Cosine
Identities

\section*{Example of Shifts}

Solution: We begin by using the additive identity for sine
\[
\sin \left(x+\frac{\pi}{2}\right)=\sin (x) \cos \left(\frac{\pi}{2}\right)+\cos (x) \sin \left(\frac{\pi}{2}\right)
\]

Since \(\cos \left(\frac{\pi}{2}\right)=0\) and \(\sin \left(\frac{\pi}{2}\right)=1\),

\section*{Example of Shifts}

Solution: We begin by using the additive identity for sine
\[
\sin \left(x+\frac{\pi}{2}\right)=\sin (x) \cos \left(\frac{\pi}{2}\right)+\cos (x) \sin \left(\frac{\pi}{2}\right)
\]

Since \(\cos \left(\frac{\pi}{2}\right)=0\) and \(\sin \left(\frac{\pi}{2}\right)=1\),
\[
\sin \left(x+\frac{\pi}{2}\right)=\cos (x)
\]

Introduction
Annual Temperature Cycles
Trigonometric Functions
Trigonometric Models

Basic Trig Functions
Radian Measure
Sine and Cosine
Properties of Sine and Cosine
Identities

\section*{Example of Shifts}

Solution (cont): Similarly from the additive identity for cosine

Basic Trig Functions
Radian Measure
Sine and Cosine
Properties of Sine and Cosine
Identities

\section*{Example of Shifts}

Solution (cont): Similarly from the additive identity for cosine
\[
\cos \left(x-\frac{\pi}{2}\right)=\cos (x) \cos \left(\frac{\pi}{2}\right)+\sin (x) \sin \left(\frac{\pi}{2}\right)
\]

Basic Trig Functions
Radian Measure
Sine and Cosine
Properties of Sine and Cosine
Identities

\section*{Example of Shifts}

Solution (cont): Similarly from the additive identity for cosine
\[
\cos \left(x-\frac{\pi}{2}\right)=\cos (x) \cos \left(\frac{\pi}{2}\right)+\sin (x) \sin \left(\frac{\pi}{2}\right)
\]

Again \(\cos \left(\frac{\pi}{2}\right)=0\) and \(\sin \left(\frac{\pi}{2}\right)=1\), so

\section*{Example of Shifts}

Solution (cont): Similarly from the additive identity for cosine
\[
\cos \left(x-\frac{\pi}{2}\right)=\cos (x) \cos \left(\frac{\pi}{2}\right)+\sin (x) \sin \left(\frac{\pi}{2}\right)
\]

Again \(\cos \left(\frac{\pi}{2}\right)=0\) and \(\sin \left(\frac{\pi}{2}\right)=1\), so
\[
\cos \left(x-\frac{\pi}{2}\right)=\sin (x)
\]
```

Vertical Shift and Amplitude
Frequency and Period
Phase Shift
Examples
Phase Shift of Half a Period
Equivalent Sine and Cosine Models
Return to Annual Temperature Variation
Other Examples

```
Annual Temperature Cycles
    Trigonometric Functions
    Trigonometric Models

\section*{Trigonometric Models}

Trigonometric Models are appropriate when data follows a simple oscillatory behavior

Introduction
Annual Temperature Cycles
Trigonometric Functions
Trigonometric Models

\section*{Trigonometric Models}

Trigonometric Models are appropriate when data follows a simple oscillatory behavior

The Cosine Model
\[
y(t)=A+B \cos (\omega(t-\phi))
\]

Introduction
Annual Temperature Cycles
Trigonometric Functions
Trigonometric Models

\section*{Trigonometric Models}

Trigonometric Models are appropriate when data follows a simple oscillatory behavior

The Cosine Model
\[
y(t)=A+B \cos (\omega(t-\phi))
\]

The Sine Model
\[
y(t)=A+B \sin (\omega(t-\phi))
\]

\section*{Trigonometric Models}

Trigonometric Models are appropriate when data follows a simple oscillatory behavior

The Cosine Model
\[
y(t)=A+B \cos (\omega(t-\phi))
\]

The Sine Model
\[
y(t)=A+B \sin (\omega(t-\phi))
\]

Each model has Four Parameters

\section*{Vertical Shift and Amplitude}

Trigonometric Model Parameters: For the cosine model
\[
y(t)=A+B \cos (\omega(t-\phi))
\]

\section*{Vertical Shift and Amplitude}

Trigonometric Model Parameters: For the cosine model
\[
y(t)=A+B \cos (\omega(t-\phi))
\]
- The model parameter \(A\) is the vertical shift, which is associated with the average height of the model

\section*{Vertical Shift and Amplitude}

Trigonometric Model Parameters: For the cosine model
\[
y(t)=A+B \cos (\omega(t-\phi))
\]
- The model parameter \(A\) is the vertical shift, which is associated with the average height of the model
- The model parameter \(B\) gives the amplitude, which measures the distance from the average, \(A\), to the maximum (or minimum) of the model

\section*{Vertical Shift and Amplitude}

Trigonometric Model Parameters: For the cosine model
\[
y(t)=A+B \cos (\omega(t-\phi))
\]
- The model parameter \(A\) is the vertical shift, which is associated with the average height of the model
- The model parameter \(B\) gives the amplitude, which measures the distance from the average, \(A\), to the maximum (or minimum) of the model

There are similar parameters for the sine model

\section*{Frequency and Period}

Trigonometric Model Parameters: For the cosine model
\[
y(t)=A+B \cos (\omega(t-\phi))
\]

\section*{Frequency and Period}

Trigonometric Model Parameters: For the cosine model
\[
y(t)=A+B \cos (\omega(t-\phi))
\]
- The model parameter \(\omega\) is the frequency, which gives the number of periods of the model that occur as \(t\) varies over \(2 \pi\) radians

\section*{Frequency and Period}

Trigonometric Model Parameters: For the cosine model
\[
y(t)=A+B \cos (\omega(t-\phi))
\]
- The model parameter \(\omega\) is the frequency, which gives the number of periods of the model that occur as \(t\) varies over \(2 \pi\) radians
- The period is given by \(T=\frac{2 \pi}{\omega}\)

\section*{Frequency and Period}

Trigonometric Model Parameters: For the cosine model
\[
y(t)=A+B \cos (\omega(t-\phi))
\]
- The model parameter \(\omega\) is the frequency, which gives the number of periods of the model that occur as \(t\) varies over \(2 \pi\) radians
- The period is given by \(T=\frac{2 \pi}{\omega}\)

There are similar parameters for the sine model
```

Vertical Shift and Amplitude
Frequency and Period
Phase Shift
Examples
Phase Shift of Half a Period
Equivalent Sine and Cosine Models
Return to Annual Temperature Variation
Other Examples

```
Annual Temperature Cycles
    Trigonometric Functions
    Trigonometric Models

\section*{Phase Shift}

Trigonometric Model Parameters: For the cosine model
\[
y(t)=A+B \cos (\omega(t-\phi))
\]

\section*{Phase Shift}

Trigonometric Model Parameters: For the cosine model
\[
y(t)=A+B \cos (\omega(t-\phi))
\]
- The model parameter \(\phi\) is the phase shift, which shifts our models to the left or right
```

Vertical Shift and Amplitude
Frequency and Period
Phase Shift
Examples
Phase Shift of Half a Period
Equivalent Sine and Cosine Models
Return to Annual Temperature Variation
Other Examples

```

\section*{Phase Shift}

Trigonometric Model Parameters: For the cosine model
\[
y(t)=A+B \cos (\omega(t-\phi))
\]
- The model parameter \(\phi\) is the phase shift, which shifts our models to the left or right
- This gives a horizontal shift of \(\phi\) units

\section*{Phase Shift}

Trigonometric Model Parameters: For the cosine model
\[
y(t)=A+B \cos (\omega(t-\phi))
\]
- The model parameter \(\phi\) is the phase shift, which shifts our models to the left or right
- This gives a horizontal shift of \(\phi\) units
- If the period is denoted \(T=\frac{2 \pi}{\omega}\), then the principle phase shift satisfies \(\phi \in[0, T)\)
```

Frequency and Period
Phase Shift
Examples
Phase Shift of Half a Period
Equivalent Sine and Cosine Models
Return to Annual Temperature Variation
Other Examples

```

\section*{Phase Shift}

Trigonometric Model Parameters: For the cosine model
\[
y(t)=A+B \cos (\omega(t-\phi))
\]
- The model parameter \(\phi\) is the phase shift, which shifts our models to the left or right
- This gives a horizontal shift of \(\phi\) units
- If the period is denoted \(T=\frac{2 \pi}{\omega}\), then the principle phase shift satisfies \(\phi \in[0, T)\)
- By periodicity of the model, if \(\phi\) is any phase shift
\[
\phi_{1}=\phi+n T=\phi+\frac{2 n \pi}{\omega}, \quad n \text { an integer }
\]
is a phase shift for an equivalent model

\section*{Phase Shift}

Trigonometric Model Parameters: For the cosine model
\[
y(t)=A+B \cos (\omega(t-\phi))
\]
- The model parameter \(\phi\) is the phase shift, which shifts our models to the left or right
- This gives a horizontal shift of \(\phi\) units
- If the period is denoted \(T=\frac{2 \pi}{\omega}\), then the principle phase shift satisfies \(\phi \in[0, T)\)
- By periodicity of the model, if \(\phi\) is any phase shift
\[
\phi_{1}=\phi+n T=\phi+\frac{2 n \pi}{\omega}, \quad n \text { an integer }
\]
is a phase shift for an equivalent model
There is a similar parameter for the sine model

Phase Shift
Examples
Phase Shift of Half a Period
Equivalent Sine and Cosine Models
Return to Annual Temperature Variation
Other Examples

\section*{Model Parameters}

Trigonometric Model Parameters: For the cosine and sine models
\[
y(t)=A+B \cos (\omega(t-\phi))
\]
and
\[
y(t)=A+B \sin (\omega(t-\phi))
\]

Phase Shift
Examples
Phase Shift of Half a Period
Equivalent Sine and Cosine Models
Return to Annual Temperature Variation
Other Examples

\section*{Model Parameters}

Trigonometric Model Parameters: For the cosine and sine models
\[
y(t)=A+B \cos (\omega(t-\phi))
\]
and
\[
y(t)=A+B \sin (\omega(t-\phi))
\]
- The vertical shift parameter \(A\) is unique

\section*{Model Parameters}

Trigonometric Model Parameters: For the cosine and sine models
\[
y(t)=A+B \cos (\omega(t-\phi))
\]
and
\[
y(t)=A+B \sin (\omega(t-\phi))
\]
- The vertical shift parameter \(A\) is unique
- The amplitude parameter \(B\) is unique in magnitude but the sign can be chosen by the modeler

\section*{Model Parameters}

Trigonometric Model Parameters: For the cosine and sine models
\[
y(t)=A+B \cos (\omega(t-\phi))
\]
and
\[
y(t)=A+B \sin (\omega(t-\phi))
\]
- The vertical shift parameter \(A\) is unique
- The amplitude parameter \(B\) is unique in magnitude but the sign can be chosen by the modeler
- The frequency parameter \(\omega\) is unique in magnitude but the sign can be chosen by the modeler

\section*{Model Parameters}

Trigonometric Model Parameters: For the cosine and sine models
\[
y(t)=A+B \cos (\omega(t-\phi))
\]
and
\[
y(t)=A+B \sin (\omega(t-\phi))
\]
- The vertical shift parameter \(A\) is unique
- The amplitude parameter \(B\) is unique in magnitude but the sign can be chosen by the modeler
- The frequency parameter \(\omega\) is unique in magnitude but the sign can be chosen by the modeler
- By periodicity, phase shift has infinitely many choices

\section*{Model Parameters}

Trigonometric Model Parameters: For the cosine and sine models
\[
y(t)=A+B \cos (\omega(t-\phi))
\]
and
\[
y(t)=A+B \sin (\omega(t-\phi))
\]
- The vertical shift parameter \(A\) is unique
- The amplitude parameter \(B\) is unique in magnitude but the sign can be chosen by the modeler
- The frequency parameter \(\omega\) is unique in magnitude but the sign can be chosen by the modeler
- By periodicity, phase shift has infinitely many choices
- One often selects the unique principle phase shift satisfying \(0 \leq \phi<T\)

Phase Shift

\section*{Examples}

Phase Shift of Half a Period
Equivalent Sine and Cosine Models
Return to Annual Temperature Variation Other Examples

\section*{Example：Period and Amplitude}

Example 1：Consider the model
\[
y(x)=4 \sin (2 x)
\]

\section*{Skip Example}

\section*{Example: Period and Amplitude}

Example 1: Consider the model
\[
y(x)=4 \sin (2 x)
\]

\section*{Skip Example}
- Find the period and amplitude

\section*{Example: Period and Amplitude}

Example 1: Consider the model
\[
y(x)=4 \sin (2 x)
\]

\section*{Skip Example}
- Find the period and amplitude
- Determine all maxima and minima for \(x \in[-2 \pi, 2 \pi]\)

\section*{Example: Period and Amplitude}

Example 1: Consider the model
\[
y(x)=4 \sin (2 x)
\]

\section*{Skip Example}
- Find the period and amplitude
- Determine all maxima and minima for \(x \in[-2 \pi, 2 \pi]\)
- Sketch a graph

Phase Shift

\section*{Examples}

Phase Shift of Half a Period
Equivalent Sine and Cosine Models
Return to Annual Temperature Variation
Other Examples

\section*{Example: Period and Amplitude}

Solution: For
\[
y(x)=4 \sin (2 x)
\]

\section*{Example: Per}
\[
y(x)=4 \sin (2 x)
\]
- The amplitude is 4 , so solution oscillates between -4 and 4

\section*{Example：Per}
\[
y(x)=4 \sin (2 x)
\]
－The amplitude is 4 ，so solution oscillates between -4 and 4
－The frequency is 2

Solution: For
\[
y(x)=4 \sin (2 x)
\]
- The amplitude is 4 , so solution oscillates between -4 and 4
- The frequency is 2
- To find the period, let \(x=T\)

\section*{Example: Period and Amplitude}

Solution: For
\[
y(x)=4 \sin (2 x)
\]
- The amplitude is 4 , so solution oscillates between -4 and 4
- The frequency is 2
- To find the period, let \(x=T\)
- The argument of sine is \(2 x\), and the period of the sine function is \(2 \pi\)

\section*{Example: Period and Amplitude}

Solution: For
\[
y(x)=4 \sin (2 x)
\]
- The amplitude is 4 , so solution oscillates between -4 and 4
- The frequency is 2
- To find the period, let \(x=T\)
- The argument of sine is \(2 x\), and the period of the sine function is \(2 \pi\)
- The period, \(T\), satisfies
\[
2 T=2 \pi \quad \text { so } \quad T=\pi
\]

\section*{Example: Period and Amplitude}

Solution: For
\[
y(x)=4 \sin (2 x)
\]
- The amplitude is 4 , so solution oscillates between -4 and 4
- The frequency is 2
- To find the period, let \(x=T\)
- The argument of sine is \(2 x\), and the period of the sine function is \(2 \pi\)
- The period, \(T\), satisfies
\[
2 T=2 \pi \quad \text { so } \quad T=\pi
\]
- Alternately,
\[
T=\frac{2 \pi}{\omega}=\frac{2 \pi}{2}=\pi
\]

Phase Shift

\section*{Examples}

Phase Shift of Half a Period
Equivalent Sine and Cosine Models
Return to Annual Temperature Variation Other Examples

\section*{Example：Period and Amplitude}

Solution（cont）：For
\[
y(x)=4 \sin (2 x)
\]

\section*{Example: Period and Amplitude}

Solution (cont): For
\[
y(x)=4 \sin (2 x)
\]
- The model begins at 0 when \(x=0\) and completes period at \(x=\pi\)

\section*{Example: Period and Amplitude}

Solution (cont): For
\[
y(x)=4 \sin (2 x)
\]
- The model begins at 0 when \(x=0\) and completes period at \(x=\pi\)
- Achieves a maximum of 4 when the argument \(2 x=\frac{\pi}{2}\) or \(x=\frac{\pi}{4}\)

\section*{Example: Period and Amplitude}

Solution (cont): For
\[
y(x)=4 \sin (2 x)
\]
- The model begins at 0 when \(x=0\) and completes period at \(x=\pi\)
- Achieves a maximum of 4 when the argument \(2 x=\frac{\pi}{2}\) or \(x=\frac{\pi}{4}\)
- Achieves a minimum of -4 when the argument \(2 x=\frac{3 \pi}{2}\) or \(x=\frac{3 \pi}{4}\)

\section*{Example: Period and Amplitude}

Solution (cont): For
\[
y(x)=4 \sin (2 x)
\]
- The model begins at 0 when \(x=0\) and completes period at \(x=\pi\)
- Achieves a maximum of 4 when the argument \(2 x=\frac{\pi}{2}\) or \(x=\frac{\pi}{4}\)
- Achieves a minimum of -4 when the argument \(2 x=\frac{3 \pi}{2}\) or \(x=\frac{3 \pi}{4}\)
- By periodicity, other maxima at \(x=\pi+\frac{\pi}{4}=\frac{5 \pi}{4}\), \(x=-\pi+\frac{\pi}{4}=-\frac{3 \pi}{4}\), and \(x=-\frac{9 \pi}{4}\)

\section*{Example: Period and Amplitude}

Solution (cont): For
\[
y(x)=4 \sin (2 x)
\]
- The model begins at 0 when \(x=0\) and completes period at \(x=\pi\)
- Achieves a maximum of 4 when the argument \(2 x=\frac{\pi}{2}\) or \(x=\frac{\pi}{4}\)
- Achieves a minimum of -4 when the argument \(2 x=\frac{3 \pi}{2}\) or \(x=\frac{3 \pi}{4}\)
- By periodicity, other maxima at \(x=\pi+\frac{\pi}{4}=\frac{5 \pi}{4}\), \(x=-\pi+\frac{\pi}{4}=-\frac{3 \pi}{4}\), and \(x=-\frac{9 \pi}{4}\)
- Similarly, there are other minima at \(x=-\frac{5 \pi}{4},-\frac{\pi}{4}\), and \(\frac{7 \pi}{4}\).

\section*{Example: Period and Amplitude}

Solution (cont): For
\[
y(x)=4 \sin (2 x)
\]
- The model begins at 0 when \(x=0\) and completes period at \(x=\pi\)
- Achieves a maximum of 4 when the argument \(2 x=\frac{\pi}{2}\) or \(x=\frac{\pi}{4}\)
- Achieves a minimum of -4 when the argument \(2 x=\frac{3 \pi}{2}\) or \(x=\frac{3 \pi}{4}\)
- By periodicity, other maxima at \(x=\pi+\frac{\pi}{4}=\frac{5 \pi}{4}\), \(x=-\pi+\frac{\pi}{4}=-\frac{3 \pi}{4}\), and \(x=-\frac{9 \pi}{4}\)
- Similarly, there are other minima at \(x=-\frac{5 \pi}{4},-\frac{\pi}{4}\), and \(\frac{7 \pi}{4}\).
- Sine is an odd function

\section*{Example：Period and Amplitude}

\section*{Graph for}

```

Vertical Shift and Amplitude
Frequency and Period
Phase Shift
Phase Shift of Half a Period
Equivalent Sine and Cosine Models
Return to Annual Temperature Variation
Other Examples

```

\section*{Examples}
Annual Temperature Cycles
    Trigonometric Functions
    Trigonometric Models

\section*{Example：Sine Function}

Example 2：Consider the model
\[
y(x)=3 \sin (2 x)-2
\]

\section*{Skip Example}

\section*{Example: Sine Function}

Example 2: Consider the model
\[
y(x)=3 \sin (2 x)-2
\]

\section*{Skip Example}
- Find the vertical shift, amplitude, and period

\section*{Example: Sine Function}

Example 2: Consider the model
\[
y(x)=3 \sin (2 x)-2
\]

\section*{Skip Example}
- Find the vertical shift, amplitude, and period
- Determine all maxima and minima for \(x \in[-2 \pi, 2 \pi]\)

\section*{Example: Sine Function}

Example 2: Consider the model
\[
y(x)=3 \sin (2 x)-2
\]

\section*{Skip Example}
- Find the vertical shift, amplitude, and period
- Determine all maxima and minima for \(x \in[-2 \pi, 2 \pi]\)
- Sketch a graph
Annual Temperature Cycles
        Trigonometric Functions
            Trigonometric Models
```

Vertical Shift and Amplitude
Frequency and Period
Phase Shift
Vertical Shift and Amplitude
Frequency and Period
Phase Shift
Examples
Phase Shift of Half a Period
Equivalent Sine and Cosine Models
Return to Annual Temperature Variation
Other Examples

```

Example：Sine Function

\section*{Solution：For}
\[
y(x)=3 \sin (2 x)-2
\]
```

Vertical Shift and Amplitude
Frequency and Period
Phase Shift
Vertical Shift and Amplitude
Frequency and Period
Phase Shift
Examples
Phase Shift of Half a Period
Equivalent Sine and Cosine Models
Return to Annual Temperature Variation
Other Examples

```

Example: Sine Function
Solution: For
\[
y(x)=3 \sin (2 x)-2
\]
- The vertical shift is -2

Solution: For
\[
y(x)=3 \sin (2 x)-2
\]
- The vertical shift is -2
- The amplitude is 3 , so solution oscillates between -5 and 1

Solution: For
\[
y(x)=3 \sin (2 x)-2
\]
- The vertical shift is -2
- The amplitude is 3 , so solution oscillates between -5 and 1
- The frequency is 2

Solution: For
\[
y(x)=3 \sin (2 x)-2
\]
- The vertical shift is -2
- The amplitude is 3 , so solution oscillates between -5 and 1
- The frequency is 2
- The period, \(T\), satisfies
\[
T=\frac{2 \pi}{\omega}=\frac{2 \pi}{2}=\pi
\]
```

Vertical Shift and Amplitude
Frequency and Period
Phase Shift
Phase Shift of Half a Period
Equivalent Sine and Cosine Models
Return to Annual Temperature Variation
Other Examples

```

\section*{Examples}
Annual Temperature Cycles
        Trigonometric Functions
            Trigonometric Models

\section*{Example：Sine Function}

\section*{Solution（cont）：For}
\[
y(x)=3 \sin (2 x)-2
\]

\section*{Example: Sine Function}

Solution (cont): For
\[
y(x)=3 \sin (2 x)-2
\]
- The model achieves a maximum of 1 when the argument \(2 x=\frac{\pi}{2}\) or \(x=\frac{\pi}{4}\)

\section*{Example: Sine Function}

Solution (cont): For
\[
y(x)=3 \sin (2 x)-2
\]
- The model achieves a maximum of 1 when the argument \(2 x=\frac{\pi}{2}\) or \(x=\frac{\pi}{4}\)
- The model achieves a minimum of -5 when the argument \(2 x=\frac{3 \pi}{2}\) or \(x=\frac{3 \pi}{4}\)

\section*{Example: Sine Function}

Solution (cont): For
\[
y(x)=3 \sin (2 x)-2
\]
- The model achieves a maximum of 1 when the argument \(2 x=\frac{\pi}{2}\) or \(x=\frac{\pi}{4}\)
- The model achieves a minimum of -5 when the argument \(2 x=\frac{3 \pi}{2}\) or \(x=\frac{3 \pi}{4}\)
- By periodicity, other maxima at \(x=\pi+\frac{\pi}{4}=\frac{5 \pi}{4}\), \(x=-\pi+\frac{\pi}{4}=-\frac{3 \pi}{4}\), and \(x=-\frac{9 \pi}{4}\)

\section*{Example: Sine Function}

\section*{Solution (cont): For}
\[
y(x)=3 \sin (2 x)-2
\]
- The model achieves a maximum of 1 when the argument \(2 x=\frac{\pi}{2}\) or \(x=\frac{\pi}{4}\)
- The model achieves a minimum of -5 when the argument \(2 x=\frac{3 \pi}{2}\) or \(x=\frac{3 \pi}{4}\)
- By periodicity, other maxima at \(x=\pi+\frac{\pi}{4}=\frac{5 \pi}{4}\), \(x=-\pi+\frac{\pi}{4}=-\frac{3 \pi}{4}\), and \(x=-\frac{9 \pi}{4}\)
- Similarly, there are other minima at \(x=-\frac{5 \pi}{4},-\frac{\pi}{4}\), and \(\frac{7 \pi}{4}\)
```

Vertical Shift and Amplitude
Frequency and Period
Phase Shift

```

Examples
Phase Shift of Half a Period
Equivalent Sine and Cosine Models
Return to Annual Temperature Variation Other Examples
Annual Temperature Cycles
        Trigonometric Functions
            Trigonometric Models

To graph a sine or cosine model, divide the period into 4 even parts

\section*{Example: Sine Function}

To graph a sine or cosine model, divide the period into 4 even parts

For this example, take \(x=0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{4}, \pi\)

\section*{Example: Sine Function}

To graph a sine or cosine model, divide the period into 4 even parts

For this example, take \(x=0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{4}, \pi\)
\[
y(0)=3 \sin (2(0))-2=3 \sin (0)-2=-2
\]

\section*{Example: Sine Function}

To graph a sine or cosine model, divide the period into 4 even parts

For this example, take \(x=0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{4}, \pi\)
\[
\begin{aligned}
y(0) & =3 \sin (2(0))-2=3 \sin (0)-2=-2 \\
y(\pi / 4) & =3 \sin (2(\pi / 4))-2=3 \sin (\pi / 2)-2=1
\end{aligned}
\]

\section*{Phase Shift}

\section*{Examples}

Phase Shift of Half a Period
Equivalent Sine and Cosine Models
Return to Annual Temperature Variation Other Examples

\section*{Example: Sine Function}

To graph a sine or cosine model, divide the period into 4 even parts

For this example, take \(x=0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{4}, \pi\)
\[
\begin{aligned}
y(0) & =3 \sin (2(0))-2=3 \sin (0)-2=-2 \\
y(\pi / 4) & =3 \sin (2(\pi / 4))-2=3 \sin (\pi / 2)-2=1 \\
y(\pi / 2) & =3 \sin (2(\pi / 2))-2=3 \sin (\pi)-2=-2
\end{aligned}
\]

\section*{Phase Shift}

\section*{Examples}

Phase Shift of Half a Period
Equivalent Sine and Cosine Models
Return to Annual Temperature Variation Other Examples

\section*{Example: Sine Function}

To graph a sine or cosine model, divide the period into 4 even parts

For this example, take \(x=0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{4}, \pi\)
\[
\begin{aligned}
y(0) & =3 \sin (2(0))-2=3 \sin (0)-2=-2 \\
y(\pi / 4) & =3 \sin (2(\pi / 4))-2=3 \sin (\pi / 2)-2=1 \\
y(\pi / 2) & =3 \sin (2(\pi / 2))-2=3 \sin (\pi)-2=-2 \\
y(3 \pi / 4) & =3 \sin (2(3 \pi / 4))-2=3 \sin (3 \pi / 2)-2=-5,
\end{aligned}
\]

\section*{Example: Sine Function}

To graph a sine or cosine model, divide the period into 4 even parts

For this example, take \(x=0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{4}, \pi\)
\[
\begin{aligned}
y(0) & =3 \sin (2(0))-2=3 \sin (0)-2=-2, \\
y(\pi / 4) & =3 \sin (2(\pi / 4))-2=3 \sin (\pi / 2)-2=1, \\
y(\pi / 2) & =3 \sin (2(\pi / 2))-2=3 \sin (\pi)-2=-2, \\
y(3 \pi / 4) & =3 \sin (2(3 \pi / 4))-2=3 \sin (3 \pi / 2)-2=-5, \\
y(\pi) & =3 \sin (2(\pi))-2=3 \sin (2 \pi)-2=-2
\end{aligned}
\]

\section*{Examples}

\section*{Example：Sine Function}

\section*{Graph for}


のดく

\section*{Example: Vertical Shift with Cosine Function}

Example 3: Consider the model
\[
y(x)=3-2 \cos (3 x)
\]

\section*{Skip Example}

\section*{Example: Vertical Shift with Cosine Function}

Example 3: Consider the model
\[
y(x)=3-2 \cos (3 x)
\]

\section*{Skip Example}
- Find the vertical shift, amplitude, and period

\section*{Example: Vertical Shift with Cosine Function}

Example 3: Consider the model
\[
y(x)=3-2 \cos (3 x)
\]

\section*{Skip Example}
- Find the vertical shift, amplitude, and period
- Determine all maxima and minima for \(x \in[0,2 \pi]\)

\section*{Example: Vertical Shift with Cosine Function}

Example 3: Consider the model
\[
y(x)=3-2 \cos (3 x)
\]

\section*{Skip Example}
- Find the vertical shift, amplitude, and period
- Determine all maxima and minima for \(x \in[0,2 \pi]\)
- Sketch a graph

Phase Shift

\section*{Examples}

Phase Shift of Half a Period
Equivalent Sine and Cosine Models
Return to Annual Temperature Variation
Other Examples

\section*{Example: Vertical Shift with Cosine Function}

\section*{Solution: For}
\[
y(x)=3-2 \cos (3 x)
\]

\section*{Example: Vertical Shift with Cosine Function}

Solution: For
\[
y(x)=3-2 \cos (3 x)
\]
- The vertical shift is 3

\section*{Example：Vertical Shift with Cosine Function}

Solution：For
\[
y(x)=3-2 \cos (3 x)
\]
－The vertical shift is 3
－The amplitude is 2 （noting that there is a negative sign）， so solution oscillates between 1 and 5

\section*{Example：Vertical Shift with Cosine Function}

Solution：For
\[
y(x)=3-2 \cos (3 x)
\]
－The vertical shift is 3
－The amplitude is 2 （noting that there is a negative sign）， so solution oscillates between 1 and 5
－The frequency is 3

\section*{Example：Vertical Shift with Cosine Function}

Solution：For
\[
y(x)=3-2 \cos (3 x)
\]
－The vertical shift is 3
－The amplitude is 2 （noting that there is a negative sign）， so solution oscillates between 1 and 5
－The frequency is 3
－The period，\(T\) ，satisfies
\[
T=\frac{2 \pi}{\omega}=\frac{2 \pi}{3}
\]

\section*{Example: Vertical Shift with Cosine Function}

Solution (cont): For
\[
y(x)=3-2 \cos (3 x)
\]

\section*{Example: Vertical Shift with Cosine Function}

Solution (cont): For
\[
y(x)=3-2 \cos (3 x)
\]
- The model achieves a minimum of 1 when the argument \(3 x=0\) or \(x=0\)

\section*{Example: Vertical Shift with Cosine Function}

Solution (cont): For
\[
y(x)=3-2 \cos (3 x)
\]
- The model achieves a minimum of 1 when the argument \(3 x=0\) or \(x=0\)
- The model achieves a maximum of 5 when the argument \(3 x=\pi\) or \(x=\frac{\pi}{3}\)

\section*{Example: Vertical Shift with Cosine Function}

Solution (cont): For
\[
y(x)=3-2 \cos (3 x)
\]
- The model achieves a minimum of 1 when the argument \(3 x=0\) or \(x=0\)
- The model achieves a maximum of 5 when the argument \(3 x=\pi\) or \(x=\frac{\pi}{3}\)
- By periodicity, the minima in the domain are \(x=0, \frac{2 \pi}{3}, \frac{4 \pi}{3}\), and \(2 \pi\)

\section*{Example: Vertical Shift with Cosine Function}

Solution (cont): For
\[
y(x)=3-2 \cos (3 x)
\]
- The model achieves a minimum of 1 when the argument \(3 x=0\) or \(x=0\)
- The model achieves a maximum of 5 when the argument \(3 x=\pi\) or \(x=\frac{\pi}{3}\)
- By periodicity, the minima in the domain are \(x=0, \frac{2 \pi}{3}, \frac{4 \pi}{3}\), and \(2 \pi\)
- By periodicity, the maxima in the domain are \(x=\frac{\pi}{3}, \pi\), and \(\frac{5 \pi}{3}\)

\section*{Example: Vertical Shift with Cosine Function}

Solution (cont): For
\[
y(x)=3-2 \cos (3 x)
\]
- The model achieves a minimum of 1 when the argument \(3 x=0\) or \(x=0\)
- The model achieves a maximum of 5 when the argument \(3 x=\pi\) or \(x=\frac{\pi}{3}\)
- By periodicity, the minima in the domain are \(x=0, \frac{2 \pi}{3}, \frac{4 \pi}{3}\), and \(2 \pi\)
- By periodicity, the maxima in the domain are \(x=\frac{\pi}{3}, \pi\), and \(\frac{5 \pi}{3}\)
- Note that this is an even function

\section*{Example: Vertical Shift with Cosine Function}

Graph for


\section*{Example: Vertical Shift with Cosine Function}

By inserting a phase shift of half a period, the constant for the amplitude becomes positive
\[
y(x)=3+2 \cos \left(3\left(x-\frac{\pi}{3}\right)\right) .
\]

\section*{Example：Vertical Shift with Cosine Function}

By inserting a phase shift of half a period，the constant for the amplitude becomes positive
\[
y(x)=3+2 \cos \left(3\left(x-\frac{\pi}{3}\right)\right) .
\]

Show this by employing the angle subtraction identity for the cosine function

\section*{Examples}

Phase Shift of Half a Period
Equivalent Sine and Cosine Models
Return to Annual Temperature Variation
Other Examples

\section*{Example: Vertical Shift with Cosine Function}

By inserting a phase shift of half a period, the constant for the amplitude becomes positive
\[
y(x)=3+2 \cos \left(3\left(x-\frac{\pi}{3}\right)\right) .
\]

Show this by employing the angle subtraction identity for the cosine function
\[
\begin{aligned}
y(x) & =3+2 \cos \left(3\left(x-\frac{\pi}{3}\right)\right), \\
& =3+2 \cos (3 x-\pi),
\end{aligned}
\]

\section*{Example: Vertical Shift with Cosine Function}

By inserting a phase shift of half a period, the constant for the amplitude becomes positive
\[
y(x)=3+2 \cos \left(3\left(x-\frac{\pi}{3}\right)\right) .
\]

Show this by employing the angle subtraction identity for the cosine function
\[
\begin{aligned}
y(x) & =3+2 \cos \left(3\left(x-\frac{\pi}{3}\right)\right) \\
& =3+2 \cos (3 x-\pi) \\
& =3+2(\cos (3 x) \cos (\pi)+\sin (3 x) \sin (\pi))
\end{aligned}
\]

\section*{Phase Shift}

\section*{Examples}

Phase Shift of Half a Period
Equivalent Sine and Cosine Models
Return to Annual Temperature Variation
Other Examples

\section*{Example: Vertical Shift with Cosine Function}

By inserting a phase shift of half a period, the constant for the amplitude becomes positive
\[
y(x)=3+2 \cos \left(3\left(x-\frac{\pi}{3}\right)\right) .
\]

Show this by employing the angle subtraction identity for the cosine function
\[
\begin{aligned}
y(x) & =3+2 \cos \left(3\left(x-\frac{\pi}{3}\right)\right) \\
& =3+2 \cos (3 x-\pi) \\
& =3+2(\cos (3 x) \cos (\pi)+\sin (3 x) \sin (\pi)) \\
& =3-2 \cos (3 x)
\end{aligned}
\]
since \(\cos (\pi)=-1\) and \(\sin (\pi)=0\)

\section*{Phase Shift in Models}

\section*{Phase Shift of Half a Period}

A phase shift of half a period creates an equivalent sine or cosine model with the sign of the amplitude reversed

\section*{Phase Shift in Models}

\section*{Phase Shift of Half a Period}

A phase shift of half a period creates an equivalent sine or cosine model with the sign of the amplitude reversed

\section*{Models Matching Data}
- Phase shifts are important matching data in periodic models

\section*{Phase Shift in Models}

\section*{Phase Shift of Half a Period}

A phase shift of half a period creates an equivalent sine or cosine model with the sign of the amplitude reversed

\section*{Models Matching Data}
- Phase shifts are important matching data in periodic models
- The cosine model is easiest to match, since the maximum of the cosine function occurs when the argument is zero

Phase Shift
Examples
Phase Shift of Half a Period Equivalent Sine and Cosine Models Return to Annual Temperature Variation Other Examples

\section*{Example：Cosine Model with Phase Shift}

Example 3：Consider the model
\[
y(x)=4+6 \cos \left(\frac{1}{2}(x-\pi)\right), \quad x \in[-4 \pi, 4 \pi]
\]

Skip Example

\section*{Example：Cosine Model with Phase Shift}

Example 3：Consider the model
\[
y(x)=4+6 \cos \left(\frac{1}{2}(x-\pi)\right), \quad x \in[-4 \pi, 4 \pi]
\]

\section*{Skip Example}
－Find the vertical shift，amplitude，period，and phase shift

\section*{Example: Cosine Model with Phase Shift}

Example 3: Consider the model
\[
y(x)=4+6 \cos \left(\frac{1}{2}(x-\pi)\right), \quad x \in[-4 \pi, 4 \pi]
\]

\section*{Skip Example}
- Find the vertical shift, amplitude, period, and phase shift
- Determine all maxima and minima for \(x \in[0,2 \pi]\)

\section*{Example: Cosine Model with Phase Shift}

Example 3: Consider the model
\[
y(x)=4+6 \cos \left(\frac{1}{2}(x-\pi)\right), \quad x \in[-4 \pi, 4 \pi]
\]

\section*{Skip Example}
- Find the vertical shift, amplitude, period, and phase shift
- Determine all maxima and minima for \(x \in[0,2 \pi]\)
- Sketch a graph

\section*{Example: Cosine Model with Phase Shift}

Example 3: Consider the model
\[
y(x)=4+6 \cos \left(\frac{1}{2}(x-\pi)\right), \quad x \in[-4 \pi, 4 \pi]
\]

\section*{Skip Example}
- Find the vertical shift, amplitude, period, and phase shift
- Determine all maxima and minima for \(x \in[0,2 \pi]\)
- Sketch a graph
- Find the equivalent sine model

Phase Shift
Examples
Phase Shift of Half a Period Equivalent Sine and Cosine Models Return to Annual Temperature Variation Other Examples

\section*{Example: Cosine Model with Phase Shift}

Solution: Rewrite the model
\[
y(x)=4+6 \cos \left(\frac{1}{2}(x-\pi)\right)
\]

Phase Shift
Examples
Phase Shift of Half a Period Equivalent Sine and Cosine Models Return to Annual Temperature Variation Other Examples

\section*{Example：Cosine Model with Phase Shift}

Solution：Rewrite the model
\[
y(x)=4+6 \cos \left(\frac{1}{2}(x-\pi)\right)
\]
－The vertical shift is \(A=4\)

\section*{Example：Cosine Model with Phase Shift}

Solution：Rewrite the model
\[
y(x)=4+6 \cos \left(\frac{1}{2}(x-\pi)\right)
\]
－The vertical shift is \(A=4\)
－The amplitude is \(B=6\) ，so \(y(x)\) oscillates between -2 and 10

\section*{Example：Cosine Model with Phase Shift}

Solution：Rewrite the model
\[
y(x)=4+6 \cos \left(\frac{1}{2}(x-\pi)\right)
\]
－The vertical shift is \(A=4\)
－The amplitude is \(B=6\) ，so \(y(x)\) oscillates between -2 and 10
－The frequency is \(\omega=\frac{1}{2}\)

\section*{Example: Cosine Model with Phase Shift}

Solution: Rewrite the model
\[
y(x)=4+6 \cos \left(\frac{1}{2}(x-\pi)\right)
\]
- The vertical shift is \(A=4\)
- The amplitude is \(B=6\), so \(y(x)\) oscillates between -2 and 10
- The frequency is \(\omega=\frac{1}{2}\)
- The period, \(T\), satisfies
\[
T=\frac{2 \pi}{\omega}=4 \pi
\]

\section*{Example: Cosine Model with Phase Shift}

Solution: Rewrite the model
\[
y(x)=4+6 \cos \left(\frac{1}{2}(x-\pi)\right)
\]
- The vertical shift is \(A=4\)
- The amplitude is \(B=6\), so \(y(x)\) oscillates between -2 and 10
- The frequency is \(\omega=\frac{1}{2}\)
- The period, \(T\), satisfies
\[
T=\frac{2 \pi}{\omega}=4 \pi
\]
- The phase shift is \(\phi=\pi\), which means the cosine model is shifted horizontally \(x=\pi\) units to the right

\section*{Example: Cosine Model with Phase Shift}

Solution: Rewrite the model
\[
y(x)=4+6 \cos \left(\frac{1}{2}(x-\pi)\right)
\]
- The vertical shift is \(A=4\)
- The amplitude is \(B=6\), so \(y(x)\) oscillates between -2 and 10
- The frequency is \(\omega=\frac{1}{2}\)
- The period, \(T\), satisfies
\[
T=\frac{2 \pi}{\omega}=4 \pi
\]
- The phase shift is \(\phi=\pi\), which means the cosine model is shifted horizontally \(x=\pi\) units to the right
- Since cosine has a maximum with argument zero, a maximum will occur at \(x=\pi\)

Phase Shift
Examples
Phase Shift of Half a Period Equivalent Sine and Cosine Models
Return to Annual Temperature Variation Other Examples

\section*{Example：Cosine Model with Phase Shift}

Solution（cont）：For graphing，
\[
y(x)=4+6 \cos \left(\frac{1}{2}(x-\pi)\right)
\]

The significant points are \(x=\pi, 2 \pi, 3 \pi, 4 \pi\) ，and \(5 \pi\)
\[
y(\pi)=4+6 \cos \left(\frac{1}{2}(\pi-\pi)\right)=4+6 \cos (0)=4+6(1)=10
\]

\section*{Example: Cosine Model with Phase Shift}

Solution (cont): For graphing,
\[
y(x)=4+6 \cos \left(\frac{1}{2}(x-\pi)\right)
\]

The significant points are \(x=\pi, 2 \pi, 3 \pi, 4 \pi\), and \(5 \pi\)
\[
\begin{aligned}
y(\pi) & =4+6 \cos \left(\frac{1}{2}(\pi-\pi)\right)=4+6 \cos (0)=4+6(1)=10 \\
y(2 \pi) & =4+6 \cos \left(\frac{1}{2}(2 \pi-\pi)\right)=4+6 \cos \left(\frac{\pi}{2}\right)=4+6(0)=4
\end{aligned}
\]

Phase Shift
Examples
Phase Shift of Half a Period
Equivalent Sine and Cosine Models
Return to Annual Temperature Variation
Other Examples

\section*{Example: Cosine Model with Phase Shift}

Solution (cont): For graphing,
\[
y(x)=4+6 \cos \left(\frac{1}{2}(x-\pi)\right)
\]

The significant points are \(x=\pi, 2 \pi, 3 \pi, 4 \pi\), and \(5 \pi\)
\[
\begin{aligned}
y(\pi) & =4+6 \cos \left(\frac{1}{2}(\pi-\pi)\right)=4+6 \cos (0)=4+6(1)=10 \\
y(2 \pi) & =4+6 \cos \left(\frac{1}{2}(2 \pi-\pi)\right)=4+6 \cos \left(\frac{\pi}{2}\right)=4+6(0)=4 \\
y(3 \pi) & =4+6 \cos \left(\frac{1}{2}(2 \pi-\pi)\right)=4+6 \cos (\pi)=4+6(-1)=-2
\end{aligned}
\]

Phase Shift
Examples
Phase Shift of Half a Period
Equivalent Sine and Cosine Models
Return to Annual Temperature Variation
Other Examples

\section*{Example: Cosine Model with Phase Shift}

Solution (cont): For graphing,
\[
y(x)=4+6 \cos \left(\frac{1}{2}(x-\pi)\right)
\]

The significant points are \(x=\pi, 2 \pi, 3 \pi, 4 \pi\), and \(5 \pi\)
\[
\begin{aligned}
y(\pi) & =4+6 \cos \left(\frac{1}{2}(\pi-\pi)\right)=4+6 \cos (0)=4+6(1)=10 \\
y(2 \pi) & =4+6 \cos \left(\frac{1}{2}(2 \pi-\pi)\right)=4+6 \cos \left(\frac{\pi}{2}\right)=4+6(0)=4, \\
y(3 \pi) & =4+6 \cos \left(\frac{1}{2}(2 \pi-\pi)\right)=4+6 \cos (\pi)=4+6(-1)=-2, \\
y(4 \pi) & =4+6 \cos \left(\frac{1}{2}(2 \pi-\pi)\right)=4+6 \cos \left(\frac{3 \pi}{2}\right)=4+6(0)=4,
\end{aligned}
\]

Phase Shift
Examples
Phase Shift of Half a Period
Equivalent Sine and Cosine Models
Return to Annual Temperature Variation
Other Examples

\section*{Example: Cosine Model with Phase Shift}

Solution (cont): For graphing,
\[
y(x)=4+6 \cos \left(\frac{1}{2}(x-\pi)\right)
\]

The significant points are \(x=\pi, 2 \pi, 3 \pi, 4 \pi\), and \(5 \pi\)
\[
\begin{aligned}
y(\pi) & =4+6 \cos \left(\frac{1}{2}(\pi-\pi)\right)=4+6 \cos (0)=4+6(1)=10 \\
y(2 \pi) & =4+6 \cos \left(\frac{1}{2}(2 \pi-\pi)\right)=4+6 \cos \left(\frac{\pi}{2}\right)=4+6(0)=4 \\
y(3 \pi) & =4+6 \cos \left(\frac{1}{2}(2 \pi-\pi)\right)=4+6 \cos (\pi)=4+6(-1)=-2 \\
y(4 \pi) & =4+6 \cos \left(\frac{1}{2}(2 \pi-\pi)\right)=4+6 \cos \left(\frac{3 \pi}{2}\right)=4+6(0)=4 \\
y(5 \pi) & =4+6 \cos \left(\frac{1}{2}(2 \pi-\pi)\right)=4+6 \cos (2 \pi)=4+6(1)=10
\end{aligned}
\]

\section*{Example：Cosine Model with Phase Shift}

Graph for


\section*{Example: Cosine Model with Phase Shift}

Solution (cont): The appropriate sine model has the same vertical shift, \(A\), amplitude, \(B\), and frequency, \(\omega\),
\[
y(x)=4+6 \sin \left(\frac{1}{2}(x-\phi)\right)
\]

\section*{Example：Cosine Model with Phase Shift}

Solution（cont）：The appropriate sine model has the same vertical shift，\(A\) ，amplitude，\(B\) ，and frequency，\(\omega\) ，
\[
y(x)=4+6 \sin \left(\frac{1}{2}(x-\phi)\right)
\]

Must find appropriate phase shift，\(\phi\)

\section*{Example: Cosine Model with Phase Shift}

Solution (cont): The appropriate sine model has the same vertical shift, \(A\), amplitude, \(B\), and frequency, \(\omega\),
\[
y(x)=4+6 \sin \left(\frac{1}{2}(x-\phi)\right)
\]

Must find appropriate phase shift, \(\phi\)
Recall the cosine function is horizontally shifted to the left of the sine function by \(\frac{\pi}{2}\)

\section*{Example: Cosine Model with Phase Shift}

Solution (cont): The appropriate sine model has the same vertical shift, \(A\), amplitude, \(B\), and frequency, \(\omega\),
\[
y(x)=4+6 \sin \left(\frac{1}{2}(x-\phi)\right)
\]

Must find appropriate phase shift, \(\phi\)
Recall the cosine function is horizontally shifted to the left of the sine function by \(\frac{\pi}{2}\)
\[
\cos \left(\frac{1}{2}(x-\pi)\right)=\sin \left(\frac{1}{2}(x-\pi)+\frac{\pi}{2}\right)=\sin \left(\frac{1}{2}(x-\phi)\right)
\]

\section*{Example: Cosine Model with Phase Shift}

Solution (cont): The appropriate sine model has the same vertical shift, \(A\), amplitude, \(B\), and frequency, \(\omega\),
\[
y(x)=4+6 \sin \left(\frac{1}{2}(x-\phi)\right)
\]

Must find appropriate phase shift, \(\phi\)
Recall the cosine function is horizontally shifted to the left of the sine function by \(\frac{\pi}{2}\)
\[
\cos \left(\frac{1}{2}(x-\pi)\right)=\sin \left(\frac{1}{2}(x-\pi)+\frac{\pi}{2}\right)=\sin \left(\frac{1}{2}(x-\phi)\right)
\]

It follows that we want
\[
-\frac{\pi}{2}+\frac{\pi}{2}=-\frac{\phi}{2} \quad \text { or } \quad \phi=0
\]

\section*{Example: Cosine Model with Phase Shift}

Solution (cont): The equivalent sine model is
\[
y(x)=4+6 \sin \left(\frac{x}{2}\right)
\]

\section*{Example: Cosine Model with Phase Shift}

Solution (cont): The equivalent sine model is
\[
y(x)=4+6 \sin \left(\frac{x}{2}\right)
\]

Thus, the original phase-shifted cosine model
\[
y(x)=4+6 \cos \left(\frac{1}{2}(x-\pi)\right)
\]
is the same as an unshifted sine model

\section*{Equivalent Sine and Cosine Models}

\section*{Phase Shift for Equivalent Sine and Cosine Models}

Suppose that the sine and cosine models are equivalent, so
\[
\sin \left(\omega\left(x-\phi_{1}\right)\right)=\cos \left(\omega\left(x-\phi_{2}\right)\right)
\]

\section*{Equivalent Sine and Cosine Models}

\section*{Phase Shift for Equivalent Sine and Cosine Models}

Suppose that the sine and cosine models are equivalent, so
\[
\sin \left(\omega\left(x-\phi_{1}\right)\right)=\cos \left(\omega\left(x-\phi_{2}\right)\right)
\]

The relationship between the phase shifts, \(\phi_{1}\) and \(\phi_{2}\) satisfies:
\[
\phi_{1}=\phi_{2}-\frac{\pi}{2 \omega} .
\]

\section*{Equivalent Sine and Cosine Models}

\section*{Phase Shift for Equivalent Sine and Cosine Models}

Suppose that the sine and cosine models are equivalent, so
\[
\sin \left(\omega\left(x-\phi_{1}\right)\right)=\cos \left(\omega\left(x-\phi_{2}\right)\right)
\]

The relationship between the phase shifts, \(\phi_{1}\) and \(\phi_{2}\) satisfies:
\[
\phi_{1}=\phi_{2}-\frac{\pi}{2 \omega} .
\]

Note: Remember that the phase shift is not unique
It can vary by integer multiples of the period, \(T=\frac{2 \pi}{\omega}\)

\section*{Return to Annual Temperature Model}

Annual Temperature Model: Started section with data and graphs of average monthly temperatures for Chicago and San Diego

\section*{Return to Annual Temperature Model}

Annual Temperature Model: Started section with data and graphs of average monthly temperatures for Chicago and San Diego
- Fit data to cosine model for temperature, \(T\),
\[
T(m)=A+B \cos (\omega(m-\phi))
\]
where \(m\) is in months

\section*{Return to Annual Temperature Model}

Annual Temperature Model: Started section with data and graphs of average monthly temperatures for Chicago and San Diego
- Fit data to cosine model for temperature, \(T\),
\[
T(m)=A+B \cos (\omega(m-\phi))
\]
where \(m\) is in months
- Find best model parameters, \(A, B, \omega\), and \(\phi\)

\section*{Return to Annual Temperature Model}

Annual Temperature Model: Started section with data and graphs of average monthly temperatures for Chicago and San Diego
- Fit data to cosine model for temperature, \(T\),
\[
T(m)=A+B \cos (\omega(m-\phi))
\]
where \(m\) is in months
- Find best model parameters, \(A, B, \omega\), and \(\phi\)
- The frequency, \(\omega\), is constrained by a period of 12 months

\section*{Return to Annual Temperature Model}

Annual Temperature Model: Started section with data and graphs of average monthly temperatures for Chicago and San Diego
- Fit data to cosine model for temperature, \(T\),
\[
T(m)=A+B \cos (\omega(m-\phi))
\]
where \(m\) is in months
- Find best model parameters, \(A, B, \omega\), and \(\phi\)
- The frequency, \(\omega\), is constrained by a period of 12 months
- It follows that
\[
12 \omega=2 \pi \quad \text { or } \quad \omega=\frac{\pi}{6}=0.5236
\]

Phase Shift
Examples
Phase Shift of Half a Period
Equivalent Sine and Cosine Models
Return to Annual Temperature Variation Other Examples

Return to Annual Temperature Model

\section*{Annual Temperature Model：}
\[
T(m)=A+B \cos (\omega(m-\phi))
\]

\section*{Annual Temperature Model:}
\[
T(m)=A+B \cos (\omega(m-\phi))
\]
- Choose \(A\) to be the average annual temperature

\section*{Annual Temperature Model:}
\[
T(m)=A+B \cos (\omega(m-\phi))
\]
- Choose \(A\) to be the average annual temperature
- Average for San Diego is \(A=64.29\)
- Average for Chicago is \(A=49.17\)

\section*{Annual Temperature Model:}
\[
T(m)=A+B \cos (\omega(m-\phi))
\]
- Choose \(A\) to be the average annual temperature
- Average for San Diego is \(A=64.29\)
- Average for Chicago is \(A=49.17\)
- Perform least squares best fit to data for \(B\) and \(\phi\)

\section*{Return to Annual Temperature Model}

\section*{Annual Temperature Model:}
\[
T(m)=A+B \cos (\omega(m-\phi))
\]
- Choose \(A\) to be the average annual temperature
- Average for San Diego is \(A=64.29\)
- Average for Chicago is \(A=49.17\)
- Perform least squares best fit to data for \(B\) and \(\phi\)
- For San Diego, obtain \(B=7.29\) and \(\phi=6.74\)
- For Chicago, obtain \(B=25.51\) and \(\phi=6.15\)

\section*{Return to Annual Temperature Model}

\section*{Annual Temperature Model for San Diego：}
\[
T(m)=64.29+7.29 \cos (0.5236(m-6.74))
\]

Annual Temperature Model for Chicago：
\[
T(m)=49.17+25.51 \cos (0.5236(m-6.15))
\]

\section*{Return to Annual Temperature Model}

\section*{Annual Temperature Model for San Diego:}
\[
T(m)=64.29+7.29 \cos (0.5236(m-6.74))
\]

Annual Temperature Model for Chicago:
\[
T(m)=49.17+25.51 \cos (0.5236(m-6.15))
\]
- The amplitude of models

\section*{Return to Annual Temperature Model}

Annual Temperature Model for San Diego:
\[
T(m)=64.29+7.29 \cos (0.5236(m-6.74))
\]

Annual Temperature Model for Chicago:
\[
T(m)=49.17+25.51 \cos (0.5236(m-6.15))
\]
- The amplitude of models
- Temperature in San Diego only varies \(\pm 7.29^{\circ} \mathrm{F}\), giving it a "Mediterranean" climate
- Temperature in Chicago varies \(\pm 25.51^{\circ} \mathrm{F}\), indicating cold winters and hot summers

\section*{Return to Annual Temperature Model}

Annual Temperature Model for San Diego：
\[
T(m)=64.29+7.29 \cos (0.5236(m-6.74))
\]

Annual Temperature Model for Chicago：
\[
T(m)=49.17+25.51 \cos (0.5236(m-6.15))
\]

\section*{Return to Annual Temperature Model}

Annual Temperature Model for San Diego：
\[
T(m)=64.29+7.29 \cos (0.5236(m-6.74))
\]

Annual Temperature Model for Chicago：
\[
T(m)=49.17+25.51 \cos (0.5236(m-6.15))
\]
－The phase shift for the models

\section*{Return to Annual Temperature Model}

Annual Temperature Model for San Diego:
\[
T(m)=64.29+7.29 \cos (0.5236(m-6.74))
\]

Annual Temperature Model for Chicago:
\[
T(m)=49.17+25.51 \cos (0.5236(m-6.15))
\]
- The phase shift for the models
- For San Diego, the phase shift of \(\phi=6.74\), so the maximum temperature occurs at 6.74 months (late July)
- For Chicago, the phase shift of \(\phi=6.15\), so the maximum temperature occurs at 6.15 months (early July)

\section*{Return to Annual Temperature Model}

\section*{Convert Cosine Model to Sine Model：}
\[
T(m)=A+B \sin \left(\omega\left(m-\phi_{2}\right)\right)
\]

\section*{Return to Annual Temperature Model}

\section*{Convert Cosine Model to Sine Model:}
\[
T(m)=A+B \sin \left(\omega\left(m-\phi_{2}\right)\right)
\]
- Formula shows
\[
\phi_{2}=\phi-\frac{\pi}{2 \omega}
\]
where \(\phi\) is from the cosine model

\section*{Return to Annual Temperature Model}

\section*{Convert Cosine Model to Sine Model:}
\[
T(m)=A+B \sin \left(\omega\left(m-\phi_{2}\right)\right)
\]
- Formula shows
\[
\phi_{2}=\phi-\frac{\pi}{2 \omega}
\]
where \(\phi\) is from the cosine model
- For San Diego, \(\phi_{2}=3.74\)
- For Chicago, \(\phi_{2}=3.15\)

\section*{Return to Annual Temperature Model}

\section*{Convert Cosine Model to Sine Model:}
\[
T(m)=A+B \sin \left(\omega\left(m-\phi_{2}\right)\right)
\]
- Formula shows
\[
\phi_{2}=\phi-\frac{\pi}{2 \omega}
\]
where \(\phi\) is from the cosine model
- For San Diego, \(\phi_{2}=3.74\)
- For Chicago, \(\phi_{2}=3.15\)
- Sine Model for San Diego:
\[
T(m)=64.29+7.29 \sin (0.5236(m-3.74))
\]

Phase Shift
Examples
Phase Shift of Half a Period
Equivalent Sine and Cosine Models
Return to Annual Temperature Variation Other Examples

\section*{Return to Annual Temperature Model}

Convert Cosine Model to Sine Model:
\[
T(m)=A+B \sin \left(\omega\left(m-\phi_{2}\right)\right)
\]
- Formula shows
\[
\phi_{2}=\phi-\frac{\pi}{2 \omega}
\]
where \(\phi\) is from the cosine model
- For San Diego, \(\phi_{2}=3.74\)
- For Chicago, \(\phi_{2}=3.15\)
- Sine Model for San Diego:
\[
T(m)=64.29+7.29 \sin (0.5236(m-3.74))
\]
- Sine Model for Chicago:
\[
T(m)=49.17+25.51 \sin (0.5236(m-3.15))
\]

\section*{Population Model with Phase Shift}

Population Model: Suppose population data show a 10 year periodic behavior with a maximum population of 26 (thousand) at \(t=2\) and a minimum population of 14 (thousand) at \(t=7\)

\section*{Population Model with Phase Shift}

Population Model: Suppose population data show a 10 year periodic behavior with a maximum population of 26 (thousand) at \(t=2\) and a minimum population of 14 (thousand) at \(t=7\) Assume a model of the form
\[
y(t)=A+B \sin (\omega(t-\phi))
\]

Skip Example

\section*{Population Model with Phase Shift}

Population Model: Suppose population data show a 10 year periodic behavior with a maximum population of 26 (thousand) at \(t=2\) and a minimum population of 14 (thousand) at \(t=7\)

Assume a model of the form
\[
y(t)=A+B \sin (\omega(t-\phi))
\]

\section*{Skip Example}
- Find the constants \(A, B, \omega\), and \(\phi\) with \(B>0, \omega>0\), and \(\phi \in[0,10)\)

\section*{Population Model with Phase Shift}

Population Model: Suppose population data show a 10 year periodic behavior with a maximum population of 26 (thousand) at \(t=2\) and a minimum population of 14 (thousand) at \(t=7\)

Assume a model of the form
\[
y(t)=A+B \sin (\omega(t-\phi))
\]

\section*{Skip Example}
- Find the constants \(A, B, \omega\), and \(\phi\) with \(B>0, \omega>0\), and \(\phi \in[0,10)\)
- Since \(\phi\) is not unique, find values of \(\phi\) with \(\phi \in[-10,0)\) and \(\phi \in[10,20)\)

\section*{Population Model with Phase Shift}

Population Model: Suppose population data show a 10 year periodic behavior with a maximum population of 26 (thousand) at \(t=2\) and a minimum population of 14 (thousand) at \(t=7\)

Assume a model of the form
\[
y(t)=A+B \sin (\omega(t-\phi))
\]

\section*{Skip Example}
- Find the constants \(A, B, \omega\), and \(\phi\) with \(B>0, \omega>0\), and \(\phi \in[0,10)\)
- Since \(\phi\) is not unique, find values of \(\phi\) with \(\phi \in[-10,0)\) and \(\phi \in[10,20)\)
- Sketch a graph

\section*{Population Model with Phase Shift}

Population Model: Suppose population data show a 10 year periodic behavior with a maximum population of 26 (thousand) at \(t=2\) and a minimum population of 14 (thousand) at \(t=7\)

Assume a model of the form
\[
y(t)=A+B \sin (\omega(t-\phi))
\]

\section*{Skip Example}
- Find the constants \(A, B, \omega\), and \(\phi\) with \(B>0, \omega>0\), and \(\phi \in[0,10)\)
- Since \(\phi\) is not unique, find values of \(\phi\) with \(\phi \in[-10,0)\) and \(\phi \in[10,20)\)
- Sketch a graph
- Find the equivalent cosine model

Vertical Shift and Amplitude
Frequency and Period
Phase Shift
Annual Temperature Cycles Trigonometric Functions Trigonometric Models

Examples
Phase Shift of Half a Period
Equivalent Sine and Cosine Models
Return to Annual Temperature Variation
Other Examples

\section*{Population Model with Phase Shift}

\section*{Solution：Compute the various parameters}

\section*{Population Model with Phase Shift \\ Solution：Compute the various parameters}
－The vertical shift satisfies
\[
A=\frac{26+14}{2}=20
\]

\section*{Population Model with Phase Shift}

Solution: Compute the various parameters
- The vertical shift satisfies
\[
A=\frac{26+14}{2}=20
\]
- The amplitude satisfies
\[
B=26-20=6
\]

\section*{Population Model with Phase Shift}

Solution: Compute the various parameters
- The vertical shift satisfies
\[
A=\frac{26+14}{2}=20
\]
- The amplitude satisfies
\[
B=26-20=6
\]
- Since the period is \(T=10\) years, the frequency, \(\omega\), satisfies
\[
\omega=\frac{2 \pi}{10}=\frac{\pi}{5}
\]

Introduction
Annual Temperature Cycles Trigonometric Functions Trigonometric Models

Phase Shift
Examples
Phase Shift of Half a Period
Equivalent Sine and Cosine Models
Return to Annual Temperature Variation Other Examples

\section*{Population Model with Phase Shift}

\section*{Solution（cont）：Compute the phase shift}

\section*{Population Model with Phase Shift}

Solution (cont): Compute the phase shift
- The maximum of 26 occurs at \(t=2\), so the model satisfies:
\[
y(2)=26=20+6 \sin \left(\frac{\pi}{5}(2-\phi)\right)
\]

\section*{Population Model with Phase Shift}

Solution (cont): Compute the phase shift
- The maximum of 26 occurs at \(t=2\), so the model satisfies:
\[
y(2)=26=20+6 \sin \left(\frac{\pi}{5}(2-\phi)\right)
\]
- Clearly
\[
\sin \left(\frac{\pi}{5}(2-\phi)\right)=1
\]

\section*{Population Model with Phase Shift}

Solution (cont): Compute the phase shift
- The maximum of 26 occurs at \(t=2\), so the model satisfies:
\[
y(2)=26=20+6 \sin \left(\frac{\pi}{5}(2-\phi)\right)
\]
- Clearly
\[
\sin \left(\frac{\pi}{5}(2-\phi)\right)=1
\]
- The sine function is at its maximum when its argument is \(\frac{\pi}{2}\), so
\[
\begin{aligned}
\frac{\pi}{5}(2-\phi) & =\frac{\pi}{2} \\
2-\phi & =\frac{5}{2} \\
\phi & =-\frac{1}{2}
\end{aligned}
\]

Introduction
Annual Temperature Cycles Trigonometric Functions

Trigonometric Models

Phase Shift
Examples
Phase Shift of Half a Period
Equivalent Sine and Cosine Models
Return to Annual Temperature Variation Other Examples

\section*{Population Model with Phase Shift}

Solution (cont): Continuing, the phase shift was
\[
\phi=-\frac{1}{2}
\]

\section*{Population Model with Phase Shift}

Solution (cont): Continuing, the phase shift was
\[
\phi=-\frac{1}{2}
\]
- This value of \(\phi\) is not in the interval \([0,10)\)

\section*{Population Model with Phase Shift}

Solution (cont): Continuing, the phase shift was
\[
\phi=-\frac{1}{2}
\]
- This value of \(\phi\) is not in the interval \([0,10)\)
- The periodicity, \(T=10\), of the model is also reflected in the phase shift, \(\phi\)

\section*{Population Model with Phase Shift}

Solution (cont): Continuing, the phase shift was
\[
\phi=-\frac{1}{2}
\]
- This value of \(\phi\) is not in the interval \([0,10)\)
- The periodicity, \(T=10\), of the model is also reflected in the phase shift, \(\phi\)
-
\[
\begin{aligned}
\phi & =-\frac{1}{2}+10 n, \quad n \text { an integer } \\
\phi & =\ldots-10.5,-0.5,9.5,19.5, \ldots
\end{aligned}
\]

\section*{Population Model with Phase Shift}

Solution (cont): Continuing, the phase shift was
\[
\phi=-\frac{1}{2}
\]
- This value of \(\phi\) is not in the interval \([0,10)\)
- The periodicity, \(T=10\), of the model is also reflected in the phase shift, \(\phi\)
-
\[
\begin{aligned}
\phi & =-\frac{1}{2}+10 n, \quad n \text { an integer } \\
\phi & =\ldots-10.5,-0.5,9.5,19.5, \ldots
\end{aligned}
\]
- The principle phase shift is \(\phi=9.5\)

Phase Shift
Examples
Phase Shift of Half a Period
Equivalent Sine and Cosine Models
Return to Annual Temperature Variation Other Examples

\section*{Population Model with Phase Shift}

\section*{Solution (cont): The sine model is}


Phase Shift
Examples
Phase Shift of Half a Period
Equivalent Sine and Cosine Models
Return to Annual Temperature Variation
Other Examples

\section*{Population Model with Phase Shift}

Solution（cont）：The cosine model has the form
\[
y(t)=20+6 \cos \left(\frac{\pi}{5}\left(t-\phi_{2}\right)\right),
\]

\section*{Population Model with Phase Shift}

Solution (cont): The cosine model has the form
\[
y(t)=20+6 \cos \left(\frac{\pi}{5}\left(t-\phi_{2}\right)\right),
\]
- The vertical shift, amplitude, and frequency match the sine model

\section*{Population Model with Phase Shift}

Solution (cont): The cosine model has the form
\[
y(t)=20+6 \cos \left(\frac{\pi}{5}\left(t-\phi_{2}\right)\right),
\]
- The vertical shift, amplitude, and frequency match the sine model
- The maximum of the cosine function occurs when its argument is zero, so
\[
\begin{aligned}
\frac{\pi}{5}\left(2-\phi_{2}\right) & =0 \\
\phi_{2} & =2
\end{aligned}
\]

\section*{Population Model with Phase Shift}

Solution (cont): The cosine model has the form
\[
y(t)=20+6 \cos \left(\frac{\pi}{5}\left(t-\phi_{2}\right)\right),
\]
- The vertical shift, amplitude, and frequency match the sine model
- The maximum of the cosine function occurs when its argument is zero, so
\[
\begin{aligned}
\frac{\pi}{5}\left(2-\phi_{2}\right) & =0 \\
\phi_{2} & =2 .
\end{aligned}
\]
- The cosine model satisfies
\[
y(t)=20+6 \cos \left(\frac{\pi}{5}(t-2)\right)
\]
```

Vertical Shift and Amplitude
Frequency and Period
Phase Shift
Examples
Phase Shift of Half a Period
Equivalent Sine and Cosine Models
Return to Annual Temperature Variation
Other Examples

```

Body Temperature

\section*{Circadian Rhythms：}

\section*{Body Temperature}

\section*{Circadian Rhythms：}
－Humans，like many organisms，undergo circadian rhythms for many of their bodily functions

\section*{Body Temperature}

\section*{Circadian Rhythms：}
－Humans，like many organisms，undergo circadian rhythms for many of their bodily functions
－Circadian rhythms are the daily fluctuations that are driven by the light／dark cycle of the Earth

\section*{Body Temperature}

\section*{Circadian Rhythms:}
- Humans, like many organisms, undergo circadian rhythms for many of their bodily functions
- Circadian rhythms are the daily fluctuations that are driven by the light/dark cycle of the Earth
- Seems to affect the pineal gland in the head
```

Vertical Shift and Amplitude
Frequency and Period
Phase Shift
Examples
Phase Shift of Half a Period
Equivalent Sine and Cosine Models
Return to Annual Temperature Variation
Other Examples

```

\section*{Body Temperature}

\section*{Circadian Rhythms：}
－Humans，like many organisms，undergo circadian rhythms for many of their bodily functions
－Circadian rhythms are the daily fluctuations that are driven by the light／dark cycle of the Earth
－Seems to affect the pineal gland in the head
－This temperature normally varies a few tenths of a degree in each individual with distinct regularity
```

Vertical Shift and Amplitude
Frequency and Period
Phase Shift
Examples
Phase Shift of Half a Period
Equivalent Sine and Cosine Models
Return to Annual Temperature Variation
Other Examples

```

\section*{Body Temperature}

\section*{Circadian Rhythms:}
- Humans, like many organisms, undergo circadian rhythms for many of their bodily functions
- Circadian rhythms are the daily fluctuations that are driven by the light/dark cycle of the Earth
- Seems to affect the pineal gland in the head
- This temperature normally varies a few tenths of a degree in each individual with distinct regularity
- The body is usually at its hottest around 10 or 11 AM and at its coolest in the late evening, which helps encourage sleep

\section*{Body Temperature}

Body Temperature Model：Suppose that measurements on a particular individual show
－A high body temperature of \(37.1^{\circ} \mathrm{C}\) at 10 am
－A low body temperature of \(36.7^{\circ} \mathrm{C}\) at 10 pm

\section*{Body Temperature}

Body Temperature Model: Suppose that measurements on a particular individual show
- A high body temperature of \(37.1^{\circ} \mathrm{C}\) at 10 am
- A low body temperature of \(36.7^{\circ} \mathrm{C}\) at 10 pm

Assume body temperature \(T\) and a model of the form
\[
T(t)=A+B \cos (\omega(t-\phi))
\]

\section*{Body Temperature}

Body Temperature Model：Suppose that measurements on a particular individual show
－A high body temperature of \(37.1^{\circ} \mathrm{C}\) at 10 am
－A low body temperature of \(36.7^{\circ} \mathrm{C}\) at 10 pm
Assume body temperature \(T\) and a model of the form
\[
T(t)=A+B \cos (\omega(t-\phi))
\]
－Find the constants \(A, B, \omega\) ，and \(\phi\) with \(B>0, \omega>0\) ，and \(\phi \in[0,24)\)

\section*{Body Temperature}

Body Temperature Model: Suppose that measurements on a particular individual show
- A high body temperature of \(37.1^{\circ} \mathrm{C}\) at 10 am
- A low body temperature of \(36.7^{\circ} \mathrm{C}\) at 10 pm

Assume body temperature \(T\) and a model of the form
\[
T(t)=A+B \cos (\omega(t-\phi))
\]
- Find the constants \(A, B, \omega\), and \(\phi\) with \(B>0, \omega>0\), and \(\phi \in[0,24)\)
- Graph the model
```

Vertical Shift and Amplitude
Frequency and Period
Phase Shift

```

\section*{Body Temperature}

Body Temperature Model: Suppose that measurements on a particular individual show
- A high body temperature of \(37.1^{\circ} \mathrm{C}\) at 10 am
- A low body temperature of \(36.7^{\circ} \mathrm{C}\) at 10 pm

Assume body temperature \(T\) and a model of the form
\[
T(t)=A+B \cos (\omega(t-\phi))
\]
- Find the constants \(A, B, \omega\), and \(\phi\) with \(B>0, \omega>0\), and \(\phi \in[0,24)\)
- Graph the model
- Find the equivalent sine model
```

Vertical Shift and Amplitude
Frequency and Period
Phase Shift

```
Annual Temperature Cycles
        Trigonometric Functions
        Trigonometric Models

\section*{Body Temperature}

\section*{Solution：Compute the various parameters}

\section*{Body Temperature}

Solution: Compute the various parameters
- The vertical shift satisfies
\[
A=\frac{37.1+36.7}{2}=36.9
\]

\section*{Body Temperature}

Solution: Compute the various parameters
- The vertical shift satisfies
\[
A=\frac{37.1+36.7}{2}=36.9
\]
- The amplitude satisfies
\[
B=37.1-36.9=0.2
\]

\section*{Body Temperature}

Solution: Compute the various parameters
- The vertical shift satisfies
\[
A=\frac{37.1+36.7}{2}=36.9
\]
- The amplitude satisfies
\[
B=37.1-36.9=0.2
\]
- Since the period is \(P=24\) hours, the frequency, \(\omega\), satisfies
\[
\omega=\frac{2 \pi}{24}=\frac{\pi}{12}
\]
```

Vertical Shift and Amplitude
Frequency and Period
Phase Shift

```
Annual Temperature Cycles
        Trigonometric Functions
            Trigonometric Models

Body Temperature

\section*{Solution (cont): Compute the phase shift}

\section*{Body Temperature}

Solution（cont）：Compute the phase shift
－The maximum of \(37.1^{\circ} \mathrm{C}\) occur at \(t=10 \mathrm{am}\)

\section*{Body Temperature}

Solution (cont): Compute the phase shift
- The maximum of \(37.1^{\circ} \mathrm{C}\) occur at \(t=10 \mathrm{am}\)
- The cosine function has its maximum when its argument is 0 (or any integer multiple of \(2 \pi\) )

\section*{Body Temperature}

Solution (cont): Compute the phase shift
- The maximum of \(37.1^{\circ} \mathrm{C}\) occur at \(t=10 \mathrm{am}\)
- The cosine function has its maximum when its argument is 0 (or any integer multiple of \(2 \pi\) )
- The appropriate phase shift solves
\[
\omega(10-\phi)=0 \quad \text { or } \quad \phi=10
\]

\section*{Body Temperature}

Solution (cont): The cosine model is
\[
T(t)=36.9+0.2 \cos \left(\frac{\pi}{12}(t-10)\right)
\]

Body Temperature


Introduction
Annual Temperature Cycles Trigonometric Functions

Trigonometric Models

Phase Shift
Examples
Phase Shift of Half a Period Equivalent Sine and Cosine Models Return to Annual Temperature Variation Other Examples

\section*{Body Temperature}

Solution（cont）：The sine model for body temperature is
\[
T(t)=36.9+0.2 \sin \left(\frac{\pi}{12}\left(t-\phi_{2}\right)\right)
\]

\section*{Body Temperature}

Solution (cont): The sine model for body temperature is
\[
T(t)=36.9+0.2 \sin \left(\frac{\pi}{12}\left(t-\phi_{2}\right)\right)
\]
- The vertical shift, amplitude, and frequency match the cosine model

\section*{Body Temperature}

Solution (cont): The sine model for body temperature is
\[
T(t)=36.9+0.2 \sin \left(\frac{\pi}{12}\left(t-\phi_{2}\right)\right)
\]
- The vertical shift, amplitude, and frequency match the cosine model
- From our formula above
\[
\phi_{2}=10-\frac{\pi}{2 \omega}=10-6=4
\]

\section*{Body Temperature}

Solution (cont): The sine model for body temperature is
\[
T(t)=36.9+0.2 \sin \left(\frac{\pi}{12}\left(t-\phi_{2}\right)\right)
\]
- The vertical shift, amplitude, and frequency match the cosine model
- From our formula above
\[
\phi_{2}=10-\frac{\pi}{2 \omega}=10-6=4
\]
- The sine model satisfies
\[
T(t)=36.9+0.2 \sin \left(\frac{\pi}{12}(t-4)\right)
\]```

