Calculus for the Life Sciences II Lecture Notes – Trigonometric Functions

Joseph M. Mahaffy, \(\text{mahaffy@math.sdsu.edu} \)

Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego, CA 92182-7720

 $http://www-rohan.sdsu.edu/{\sim}jmahaffy$

Outline

- Introduction
 - Annual Temperature Cycles
 - San Diego and Chicago
 - Trigonometric Functions
 - Basic Trig Functions
 - Radian Measure
 - Sine and Cosine
 - Properties of Sine and Cosine
 - Identities
- Trigonometric Models
 - Vertical Shift and Amplitude
 - Frequency and Period
 - Phase Shift.
 - Examples
 - Phase Shift of Half a Period
 - Equivalent Sine and Cosine Models
 - Return to Annual Temperature Variation
 - Other Examples

Introduction — Trigonometric Functions

• Many phenomena in biology appear in cycles

Introduction — Trigonometric Functions

- Many phenomena in biology appear in cycles
- Natural physical cycles

Introduction — Trigonometric Functions

- Many phenomena in biology appear in cycles
- Natural physical cycles
 - Daily cycle of light
 - Annual cycle of the seasons

Introduction — Trigonometric Functions

- Many phenomena in biology appear in cycles
- Natural physical cycles
 - Daily cycle of light
 - Annual cycle of the seasons
- Oscillations are often modeled using trigonometric functions

Annual Temperature Cycles

Annual Temperature Cycles

• Weather reports give the average temperature for a day

Annual Temperature Cycles

Annual Temperature Cycles

- Weather reports give the average temperature for a day
- Long term averages help researchers predict effects of global warming over the background noise of annual variation

Annual Temperature Cycles

Annual Temperature Cycles

- Weather reports give the average temperature for a day
- Long term averages help researchers predict effects of global warming over the background noise of annual variation
- There are seasonal differences in the average daily temperature
 - Higher averages in the summer
 - Lower averages in the winter

Modeling Annual Temperature Cycles

Modeling Annual Temperature Cycles

• What mathematical tools can help predict the annual temperature cycles?

Modeling Annual Temperature Cycles

Modeling Annual Temperature Cycles

- What mathematical tools can help predict the annual temperature cycles?
- Polynomials and exponentials do not exhibit the periodic behavior

Modeling Annual Temperature Cycles

Modeling Annual Temperature Cycles

- What mathematical tools can help predict the annual temperature cycles?
- Polynomials and exponentials do not exhibit the periodic behavior
- Trigonometric functions exhibit periodicity

Table of the monthly average high and low temperatures for San Diego and Chicago

Month	Jan	Feb	Mar	Apr	May	Jun
San Diego	66/49	67/51	66/53	68/56	69/59	72/62
Chicago	29/13	34/17	46/29	59/39	70/48	80/58
Month	Jul	Aug	Sep	Oct	Nov	Dec
Month San Diego	Jul 76/66	Aug 78/68	Sep 77/66	Oct 75/61	Nov 70/54	Dec 66/49

5050

Graph of Temperature for San Diego and Chicago with best fitting **trigonometric functions**

Models of Annual Temperature Cycles for San Diego and Chicago

• The two graphs have similarities and differences

Models of Annual Temperature Cycles for San Diego and Chicago

- The two graphs have similarities and differences
 - Same seasonal period as expected

Models of Annual Temperature Cycles for San Diego and Chicago

- The two graphs have similarities and differences
 - Same seasonal period as expected
 - Seasonal variation or amplitude of oscillation for Chicago is much greater than San Diego

Models of Annual Temperature Cycles for San Diego and Chicago

- The two graphs have similarities and differences
 - Same seasonal period as expected
 - Seasonal variation or amplitude of oscillation for Chicago is much greater than San Diego
 - Overall average temperature for San Diego is greater than the average for Chicago

Models of Annual Temperature Cycles for San Diego and Chicago

- The two graphs have similarities and differences
 - Same seasonal period as expected
 - Seasonal variation or amplitude of oscillation for Chicago is much greater than San Diego
 - Overall average temperature for San Diego is greater than the average for Chicago
- Overlying models use **cosine functions**

Trigonometric Functions are often called circular functions

Trigonometric Functions are often called circular functions

• Let (x, y) be a point on a circle of radius r centered at the origin

Trigonometric Functions are often called circular functions

- Let (x,y) be a point on a circle of radius r centered at the origin
- Define the angle θ between the ray connecting the point to the origin and the x-axis

Trig Functions - 6 basic Trigonometric functions

Trig Functions – 6 basic Trigonometric functions

$$\sin(\theta) = \frac{y}{r}$$
 $\cos(\theta) = \frac{x}{r}$ $\tan(\theta) = \frac{y}{x}$

Trig Functions - 6 basic Trigonometric functions

$$\sin(\theta) = \frac{y}{r}$$
 $\cos(\theta) = \frac{x}{r}$ $\tan(\theta) = \frac{y}{x}$

$$\csc(\theta) = \frac{r}{y}$$
 $\sec(\theta) = \frac{r}{x}$ $\cot(\theta) = \frac{x}{y}$

Trig Functions - 6 basic Trigonometric functions

$$\sin(\theta) = \frac{y}{r}$$
 $\cos(\theta) = \frac{x}{r}$ $\tan(\theta) = \frac{y}{x}$
 $\csc(\theta) = \frac{r}{y}$ $\sec(\theta) = \frac{r}{x}$ $\cot(\theta) = \frac{x}{y}$

We will concentrate almost exclusively on the sine and cosine

Basic Trig Functions
Radian Measure
Sine and Cosine
Properties of Sine and Cosine
Identities

Radian Measure

Radian Measure

• Most trigonometry starts using degrees to measure an angle

Basic Trig Functions
Radian Measure
Sine and Cosine
Properties of Sine and Cosine
Identities

Radian Measure

- Most trigonometry starts using degrees to measure an angle
 - This is **not** the appropriate unit to use in Calculus

- Most trigonometry starts using degrees to measure an angle
 - This is **not** the appropriate unit to use in Calculus
- The radian measure of the angle uses the unit circle

- Most trigonometry starts using degrees to measure an angle
 - This is **not** the appropriate unit to use in Calculus
- The radian measure of the angle uses the unit circle
- The distance around the perimeter of the unit circle is 2π

- Most trigonometry starts using degrees to measure an angle
 - This is **not** the appropriate unit to use in Calculus
- The radian measure of the angle uses the unit circle
- The distance around the perimeter of the unit circle is 2π
- The radian measure of the angle θ is simply the distance along the circumference of the unit circle

- Most trigonometry starts using degrees to measure an angle
 - This is **not** the appropriate unit to use in Calculus
- The radian measure of the angle uses the unit circle
- The distance around the perimeter of the unit circle is 2π
- The radian measure of the angle θ is simply the distance along the circumference of the unit circle
 - A 45° angle is $\frac{1}{8}$ the distance around the unit circle or $\frac{\pi}{4}$ radians

- Most trigonometry starts using degrees to measure an angle
 - This is **not** the appropriate unit to use in Calculus
- The radian measure of the angle uses the unit circle
- The distance around the perimeter of the unit circle is 2π
- The radian measure of the angle θ is simply the distance along the circumference of the unit circle
 - A 45° angle is $\frac{1}{8}$ the distance around the unit circle or $\frac{\pi}{4}$ radians
 - 90° and 180° angles convert to $\frac{\pi}{2}$ and π radians

- Most trigonometry starts using degrees to measure an angle
 - This is **not** the appropriate unit to use in Calculus
- The radian measure of the angle uses the unit circle
- The distance around the perimeter of the unit circle is 2π
- The radian measure of the angle θ is simply the distance along the circumference of the unit circle
 - A 45° angle is $\frac{1}{8}$ the distance around the unit circle or $\frac{\pi}{4}$ radians
 - 90° and 180° angles convert to $\frac{\pi}{2}$ and π radians
- Conversions

$$1^{\circ} = \frac{\pi}{180} = 0.01745 \text{ radians}$$
 or $1 \text{ radian} = \frac{180^{\circ}}{\pi} = 57.296^{\circ}$

Sine and Cosine

_

Sine and Cosine: The unit circle has r = 1, so the trig functions sine and cosine satisfy

$$\cos(\theta) = x$$
 and $\sin(\theta) = y$

• The formula for cosine (cos) gives the x value of the angle, θ , (measured in radians)

Sine and Cosine: The unit circle has r = 1, so the trig functions sine and cosine satisfy

$$\cos(\theta) = x$$
 and $\sin(\theta) = y$

- The formula for cosine (cos) gives the x value of the angle, θ , (measured in radians)
- The formula for sine (sin) gives the y value of the angle, θ

Sine and Cosine: The unit circle has r = 1, so the trig functions sine and cosine satisfy

$$\cos(\theta) = x$$
 and $\sin(\theta) = y$

- The formula for cosine (cos) gives the x value of the angle, θ , (measured in radians)
- The formula for sine (sin) gives the y value of the angle, θ
- The tangent function (tan) gives the slope of the line (y/x)

Graph of $sin(\theta)$ and $cos(\theta)$ for angles $\theta \in [-2\pi, 2\pi]$

Sine and Cosine - Periodicity and Bounded

• Notice the 2π periodicity or the functions repeat the same pattern every 2π radians

Sine and Cosine - Periodicity and Bounded

- Notice the 2π periodicity or the functions repeat the same pattern every 2π radians
 - This is clear from the circle because every time you go 2π radians around the circle, you return to the same point

Sine and Cosine - Periodicity and Bounded

- Notice the 2π **periodicity** or the functions repeat the same pattern every 2π radians
 - This is clear from the circle because every time you go 2π radians around the circle, you return to the same point
- Note that both the sine and cosine functions are bounded between −1 and 1

Basic Trig Functions
Radian Measure
Sine and Cosine
Properties of Sine and Cosine
Identities

Sine and Cosine

Sine - Maximum and Minimum

• The sine function has its maximum value at $\frac{\pi}{2}$ with $\sin(\pi/2) = 1$

- The sine function has its maximum value at $\frac{\pi}{2}$ with $\sin(\pi/2) = 1$
- By periodicity, $\sin(x) = 1$ for $x = \frac{\pi}{2} + 2n\pi$ for any integer n

- The sine function has its maximum value at $\frac{\pi}{2}$ with $\sin(\pi/2) = 1$
- By periodicity, $\sin(x) = 1$ for $x = \frac{\pi}{2} + 2n\pi$ for any integer n
- The sine function has its minimum value at $\frac{3\pi}{2}$ with $\sin(3\pi/2) = -1$

Sine - Maximum and Minimum

- The sine function has its maximum value at $\frac{\pi}{2}$ with $\sin(\pi/2) = 1$
- By periodicity, $\sin(x) = 1$ for $x = \frac{\pi}{2} + 2n\pi$ for any integer n
- The sine function has its minimum value at $\frac{3\pi}{2}$ with $\sin(3\pi/2) = -1$
- By periodicity, $\sin(x) = -1$ for $x = \frac{3\pi}{2} + 2n\pi$ for any integer n

<ロト (部) (注) (注)

Cosine - Maximum and Minimum

• The cosine function has its maximum value at 0 with cos(0) = 1

- The cosine function has its maximum value at 0 with cos(0) = 1
- By periodicity, cos(x) = 1 for $x = 2n\pi$ for any integer n

- The cosine function has its maximum value at 0 with $\cos(0) = 1$
- By periodicity, cos(x) = 1 for $x = 2n\pi$ for any integer n
- The cosine function has its minimum value at π with $\cos(\pi) = -1$

- The cosine function has its maximum value at 0 with cos(0) = 1
- By periodicity, $\cos(x) = 1$ for $x = 2n\pi$ for any integer n
- The cosine function has its minimum value at π with $\cos(\pi) = -1$
- By periodicity, $\cos(x) = -1$ for $x = (2n+1)\pi$ for any integer n

6

Table of Some Important Values of Trig Functions

\boldsymbol{x}	$\sin(x)$	$\cos(x)$
0	0	1
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
$ \begin{array}{c c} \frac{\pi}{6} \\ \hline \frac{\pi}{4} \\ \hline \frac{\pi}{3} \\ \hline \frac{\pi}{2} \end{array} $	$ \frac{\frac{1}{2}}{\frac{\sqrt{2}}{2}} $ $ \frac{\sqrt{3}}{2}$	$ \frac{\frac{\sqrt{3}}{2}}{\frac{\sqrt{2}}{2}} $ $ \frac{1}{2}$
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
$\frac{\pi}{2}$	1	0
π	0	-1
$\frac{\pi}{3\pi}$ 2π	-1	0
2π	0	1

Properties of Cosine

• Periodic with **period** 2π

- Periodic with **period** 2π
- Cosine is an **even** function

- Periodic with **period** 2π
- Cosine is an **even** function
- Cosine is **bounded** by -1 and 1

- Periodic with **period** 2π
- Cosine is an **even** function
- Cosine is **bounded** by -1 and 1
- Maximum at x = 0, $\cos(0) = 1$

- Periodic with **period** 2π
- Cosine is an **even** function
- Cosine is **bounded** by -1 and 1
- Maximum at x = 0, $\cos(0) = 1$
- By periodicity, other **maxima** at $x_n = 2n\pi$ with $\cos(2n\pi) = 1$ (*n* any integer)

- Periodic with **period** 2π
- Cosine is an **even** function
- Cosine is **bounded** by -1 and 1
- Maximum at x = 0, $\cos(0) = 1$
- By periodicity, other **maxima** at $x_n = 2n\pi$ with $\cos(2n\pi) = 1$ (*n* any integer)
- Minimum at $x = \pi$, $\cos(\pi) = -1$

- Periodic with **period** 2π
- Cosine is an **even** function
- Cosine is **bounded** by -1 and 1
- Maximum at x = 0, $\cos(0) = 1$
- By periodicity, other **maxima** at $x_n = 2n\pi$ with $\cos(2n\pi) = 1$ (*n* any integer)
- Minimum at $x = \pi$, $\cos(\pi) = -1$
- By periodicity, other **minima** at $x_n = (2n+1)\pi$ with $\cos(x_n) = -1$ (n any integer)

- Periodic with **period** 2π
- Cosine is an **even** function
- Cosine is **bounded** by -1 and 1
- Maximum at x = 0, $\cos(0) = 1$
- By periodicity, other **maxima** at $x_n = 2n\pi$ with $\cos(2n\pi) = 1$ (*n* any integer)
- Minimum at $x = \pi$, $\cos(\pi) = -1$
- By periodicity, other **minima** at $x_n = (2n+1)\pi$ with $\cos(x_n) = -1$ (n any integer)
- **Zeroes of cosine** separated by π with $\cos(x_n) = 0$ when $x_n = \frac{\pi}{2} + n\pi$ (n any integer)

Properties of Sine

• Periodic with **period** 2π

- Periodic with **period** 2π
- Sine is an **odd** function

- Periodic with **period** 2π
- Sine is an **odd** function
- Sine is **bounded** by -1 and 1

- Periodic with **period** 2π
- Sine is an **odd** function
- Sine is **bounded** by -1 and 1
- Maximum at $x = \frac{\pi}{2}$, $\sin\left(\frac{\pi}{2}\right) = 1$

- Periodic with **period** 2π
- Sine is an **odd** function
- Sine is **bounded** by -1 and 1
- Maximum at $x = \frac{\pi}{2}$, $\sin\left(\frac{\pi}{2}\right) = 1$
- By periodicity, other **maxima** at $x_n = \frac{\pi}{2} + 2n\pi$ with $\sin(x_n) = 1$ (*n* any integer)

- Periodic with **period** 2π
- Sine is an **odd** function
- Sine is **bounded** by -1 and 1
- Maximum at $x = \frac{\pi}{2}$, $\sin\left(\frac{\pi}{2}\right) = 1$
- By periodicity, other **maxima** at $x_n = \frac{\pi}{2} + 2n\pi$ with $\sin(x_n) = 1$ (*n* any integer)
- Minimum at $x = \frac{3\pi}{2}$, $\sin\left(\frac{3\pi}{2}\right) = -1$

- Periodic with **period** 2π
- Sine is an **odd** function
- Sine is **bounded** by -1 and 1
- Maximum at $x = \frac{\pi}{2}$, $\sin\left(\frac{\pi}{2}\right) = 1$
- By periodicity, other **maxima** at $x_n = \frac{\pi}{2} + 2n\pi$ with $\sin(x_n) = 1$ (*n* any integer)
- Minimum at $x = \frac{3\pi}{2}$, $\sin\left(\frac{3\pi}{2}\right) = -1$
- By periodicity, other **minima** at $x_n = \frac{3\pi}{2} + 2n\pi$ with $\sin(x_n) = -1$ (*n* any integer)

- Periodic with **period** 2π
- Sine is an **odd** function
- Sine is **bounded** by -1 and 1
- Maximum at $x = \frac{\pi}{2}$, $\sin\left(\frac{\pi}{2}\right) = 1$
- By periodicity, other **maxima** at $x_n = \frac{\pi}{2} + 2n\pi$ with $\sin(x_n) = 1$ (*n* any integer)
- Minimum at $x = \frac{3\pi}{2}$, $\sin\left(\frac{3\pi}{2}\right) = -1$
- By periodicity, other **minima** at $x_n = \frac{3\pi}{2} + 2n\pi$ with $\sin(x_n) = -1$ (*n* any integer)
- Zeroes of sine separated by π with $\sin(x_n) = 0$ when $x_n = n\pi$ (n any integer)

Basic Trig Functions
Radian Measure
Sine and Cosine
Properties of Sine and Cosine
Identities

Some Identities for Sine and Cosine

Some Identities for Cosine and Sine

Some Identities for Sine and Cosine

Some Identities for Cosine and Sine

• $\cos^2(x) + \sin^2(x) = 1$ for all values of x

Some Identities for Sine and Cosine

Some Identities for Cosine and Sine

- $\cos^2(x) + \sin^2(x) = 1$ for all values of x
- Adding and Subtracting angles for cosine

$$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$$

$$\cos(x - y) = \cos(x)\cos(y) + \sin(x)\sin(y)$$

Some Identities for Sine and Cosine

Some Identities for Cosine and Sine

- Adding and Subtracting angles for cosine

$$\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$$

$$\cos(x-y) = \cos(x)\cos(y) + \sin(x)\sin(y)$$

Adding and Subtracting angles for sine

$$\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$$

$$\sin(x-y) = \sin(x)\cos(y) - \cos(x)\sin(y)$$

イロト イ御ト イヨト イヨト

Example of Shifts for Sine and Cosine:

Use the trigonometric identities to show

Example of Shifts for Sine and Cosine:

Use the trigonometric identities to show

Example of Shifts for Sine and Cosine:

Use the trigonometric identities to show

$$\bullet \sin(x) = \cos\left(x - \frac{\pi}{2}\right)$$

Example of Shifts for Sine and Cosine:

Use the trigonometric identities to show

$$\bullet \sin(x) = \cos\left(x - \frac{\pi}{2}\right)$$

The first example shows the cosine is the same as the sine function shifted to the left by $\frac{\pi}{2}$

Example of Shifts for Sine and Cosine:

Use the trigonometric identities to show

- $\bullet \sin(x) = \cos\left(x \frac{\pi}{2}\right)$

The first example shows the cosine is the same as the sine function shifted to the left by $\frac{\pi}{2}$

The second example shows the sine is the same as the cosine function shifted to the right by $\frac{\pi}{2}$

Solution: We begin by using the additive identity for sine

Solution: We begin by using the additive identity for sine

$$\sin\left(x + \frac{\pi}{2}\right) = \sin(x)\cos\left(\frac{\pi}{2}\right) + \cos(x)\sin\left(\frac{\pi}{2}\right)$$

Solution: We begin by using the additive identity for sine

$$\sin\left(x + \frac{\pi}{2}\right) = \sin(x)\cos\left(\frac{\pi}{2}\right) + \cos(x)\sin\left(\frac{\pi}{2}\right)$$

Since $\cos\left(\frac{\pi}{2}\right) = 0$ and $\sin\left(\frac{\pi}{2}\right) = 1$,

Solution: We begin by using the additive identity for sine

$$\sin\left(x + \frac{\pi}{2}\right) = \sin(x)\cos\left(\frac{\pi}{2}\right) + \cos(x)\sin\left(\frac{\pi}{2}\right)$$

Since $\cos\left(\frac{\pi}{2}\right) = 0$ and $\sin\left(\frac{\pi}{2}\right) = 1$,

$$\sin\left(x + \frac{\pi}{2}\right) = \cos(x)$$

Solution (cont): Similarly from the additive identity for cosine

Solution (cont): Similarly from the additive identity for cosine

$$\cos\left(x - \frac{\pi}{2}\right) = \cos(x)\cos\left(\frac{\pi}{2}\right) + \sin(x)\sin\left(\frac{\pi}{2}\right)$$

Solution (cont): Similarly from the additive identity for cosine

$$\cos\left(x - \frac{\pi}{2}\right) = \cos(x)\cos\left(\frac{\pi}{2}\right) + \sin(x)\sin\left(\frac{\pi}{2}\right)$$

Again
$$\cos\left(\frac{\pi}{2}\right) = 0$$
 and $\sin\left(\frac{\pi}{2}\right) = 1$, so

Solution (cont): Similarly from the additive identity for cosine

$$\cos\left(x - \frac{\pi}{2}\right) = \cos(x)\cos\left(\frac{\pi}{2}\right) + \sin(x)\sin\left(\frac{\pi}{2}\right)$$

Again $\cos\left(\frac{\pi}{2}\right) = 0$ and $\sin\left(\frac{\pi}{2}\right) = 1$, so

$$\cos\left(x - \frac{\pi}{2}\right) = \sin(x)$$

Introduction
Annual Temperature Cycles
Trigonometric Functions
Trigonometric Models

Vertical Shift and Amplitude
Frequency and Period
Phase Shift
Examples
Phase Shift of Half a Period
Equivalent Sine and Cosine Models
Return to Annual Temperature Variation
Other Examples

Trigonometric Models

Trigonometric Models are appropriate when data follows a simple oscillatory behavior

Trigonometric Models

Trigonometric Models are appropriate when data follows a simple oscillatory behavior

The Cosine Model

$$y(t) = A + B \cos(\omega(t - \phi))$$

Trigonometric Models

Trigonometric Models are appropriate when data follows a simple oscillatory behavior

The Cosine Model

$$y(t) = A + B \cos(\omega(t - \phi))$$

The Sine Model

$$y(t) = A + B \sin(\omega(t - \phi))$$

Trigonometric Models

Trigonometric Models are appropriate when data follows a simple oscillatory behavior

The Cosine Model

$$y(t) = A + B \cos(\omega(t - \phi))$$

The Sine Model

$$y(t) = A + B \sin(\omega(t - \phi))$$

Each model has Four Parameters

Introduction
Annual Temperature Cycles
Trigonometric Functions
Trigonometric Models

Vertical Shift and Amplitude
Frequency and Period
Phase Shift
Examples
Phase Shift of Half a Period
Equivalent Sine and Cosine Models
Return to Annual Temperature Variation
Other Examples

Vertical Shift and Amplitude

Trigonometric Model Parameters: For the cosine model

$$y(t) = A + B \cos(\omega(t - \phi))$$

Vertical Shift and Amplitude

Trigonometric Model Parameters: For the cosine model

$$y(t) = A + B \cos(\omega(t - \phi))$$

• The model parameter A is the **vertical shift**, which is associated with the average height of the model

Vertical Shift and Amplitude

Trigonometric Model Parameters: For the cosine model

$$y(t) = A + B \cos(\omega(t - \phi))$$

- The model parameter A is the **vertical shift**, which is associated with the average height of the model
- The model parameter B gives the **amplitude**, which measures the distance from the average, A, to the maximum (or minimum) of the model

Vertical Shift and Amplitude

Trigonometric Model Parameters: For the cosine model

$$y(t) = A + B \cos(\omega(t - \phi))$$

- The model parameter A is the **vertical shift**, which is associated with the average height of the model
- The model parameter B gives the **amplitude**, which measures the distance from the average, A, to the maximum (or minimum) of the model

There are similar parameters for the sine model

Frequency and Period

Trigonometric Model Parameters: For the cosine model

$$y(t) = A + B \cos(\omega(t - \phi))$$

Frequency and Period

Trigonometric Model Parameters: For the cosine model

$$y(t) = A + B \cos(\omega(t - \phi))$$

• The model parameter ω is the **frequency**, which gives the number of periods of the model that occur as t varies over 2π radians

Frequency and Period

Trigonometric Model Parameters: For the cosine model

$$y(t) = A + B \cos(\omega(t - \phi))$$

- The model parameter ω is the **frequency**, which gives the number of periods of the model that occur as t varies over 2π radians
- The **period** is given by $T = \frac{2\pi}{\omega}$

Frequency and Period

Trigonometric Model Parameters: For the cosine model

$$y(t) = A + B \cos(\omega(t - \phi))$$

- The model parameter ω is the **frequency**, which gives the number of periods of the model that occur as t varies over 2π radians
- The **period** is given by $T = \frac{2\pi}{\omega}$

There are similar parameters for the sine model

Phase Shift

Trigonometric Model Parameters: For the cosine model

$$y(t) = A + B \cos(\omega(t - \phi))$$

Phase Shift

Trigonometric Model Parameters: For the cosine model

$$y(t) = A + B \cos(\omega(t - \phi))$$

• The model parameter ϕ is the **phase shift**, which shifts our models to the left or right

Phase Shift

Trigonometric Model Parameters: For the cosine model

$$y(t) = A + B \cos(\omega(t - \phi))$$

- The model parameter ϕ is the **phase shift**, which shifts our models to the left or right
- This gives a **horizontal shift** of ϕ units

Phase Shift

Trigonometric Model Parameters: For the cosine model

$$y(t) = A + B \cos(\omega(t - \phi))$$

- The model parameter ϕ is the **phase shift**, which shifts our models to the left or right
- This gives a horizontal shift of ϕ units
- If the period is denoted $T = \frac{2\pi}{\omega}$, then the **principle phase** shift satisfies $\phi \in [0, T)$

Phase Shift

Trigonometric Model Parameters: For the cosine model

$$y(t) = A + B \cos(\omega(t - \phi))$$

- The model parameter ϕ is the **phase shift**, which shifts our models to the left or right
- This gives a horizontal shift of ϕ units
- If the period is denoted $T = \frac{2\pi}{\omega}$, then the **principle phase** shift satisfies $\phi \in [0, T)$
- By periodicity of the model, if ϕ is any **phase shift**

$$\phi_1 = \phi + nT = \phi + \frac{2n\pi}{\omega},$$
 n an integer

is a **phase shift** for an equivalent model

Phase Shift

Trigonometric Model Parameters: For the cosine model

$$y(t) = A + B \cos(\omega(t - \phi))$$

- The model parameter ϕ is the **phase shift**, which shifts our models to the left or right
- This gives a horizontal shift of ϕ units
- If the period is denoted $T = \frac{2\pi}{\omega}$, then the **principle phase** shift satisfies $\phi \in [0, T)$
- By periodicity of the model, if ϕ is any **phase shift**

$$\phi_1 = \phi + nT = \phi + \frac{2n\pi}{\omega},$$
 n an integer

is a **phase shift** for an equivalent model

Model Parameters

Trigonometric Model Parameters: For the cosine and sine models

$$y(t) = A + B \cos(\omega(t - \phi))$$

$$y(t) = A + B \sin(\omega(t - \phi))$$

Model Parameters

Trigonometric Model Parameters: For the cosine and sine models

$$y(t) = A + B \cos(\omega(t - \phi))$$

and

$$y(t) = A + B \sin(\omega(t - \phi))$$

 \bullet The vertical shift parameter A is unique

Model Parameters

Trigonometric Model Parameters: For the cosine and sine models

$$y(t) = A + B \cos(\omega(t - \phi))$$

$$y(t) = A + B \sin(\omega(t - \phi))$$

- The vertical shift parameter A is unique
- \bullet The **amplitude** parameter B is **unique** in magnitude but the sign can be chosen by the modeler

Model Parameters

Trigonometric Model Parameters: For the cosine and sine models

$$y(t) = A + B \cos(\omega(t - \phi))$$

$$y(t) = A + B \sin(\omega(t - \phi))$$

- \bullet The vertical shift parameter A is unique
- The **amplitude** parameter *B* is **unique** in magnitude but the sign can be chosen by the modeler
- The **frequency** parameter ω is **unique** in magnitude but the sign can be chosen by the modeler

Model Parameters

Trigonometric Model Parameters: For the cosine and sine models

$$y(t) = A + B \cos(\omega(t - \phi))$$

$$y(t) = A + B \sin(\omega(t - \phi))$$

- \bullet The vertical shift parameter A is unique
- \bullet The **amplitude** parameter B is **unique** in magnitude but the sign can be chosen by the modeler
- The **frequency** parameter ω is **unique** in magnitude but the sign can be chosen by the modeler
- By periodicity, **phase shift** has infinitely many choices

Vertical Shift and Amplitude
Frequency and Period
Phase Shift
Examples
Phase Shift of Half a Period
Equivalent Sine and Cosine Models
Return to Annual Temperature Variation
Other Examples

Model Parameters

Trigonometric Model Parameters: For the cosine and sine models

$$y(t) = A + B \cos(\omega(t - \phi))$$

and

$$y(t) = A + B \sin(\omega(t - \phi))$$

- \bullet The vertical shift parameter A is unique
- \bullet The **amplitude** parameter B is **unique** in magnitude but the sign can be chosen by the modeler
- The frequency parameter ω is unique in magnitude but the sign can be chosen by the modeler
- By periodicity, **phase shift** has infinitely many choices
- One often selects the **unique principle phase shift** satisfying $0 < \phi < T$

Example 1: Consider the model

$$y(x) = 4\sin(2x)$$

Skip Example

Example 1: Consider the model

$$y(x) = 4\sin(2x)$$

Skip Example

• Find the period and amplitude

Example 1: Consider the model

$$y(x) = 4\sin(2x)$$

Skip Example

- Find the period and amplitude
- Determine all maxima and minima for $x \in [-2\pi, 2\pi]$

Example 1: Consider the model

$$y(x) = 4\sin(2x)$$

Skip Example

- Find the period and amplitude
- Determine all maxima and minima for $x \in [-2\pi, 2\pi]$
- Sketch a graph

Vertical Shift and Amplitude
Frequency and Period
Phase Shift
Examples
Phase Shift of Half a Period
Equivalent Sine and Cosine Models
Return to Annual Temperature Variation
Other Examples

Example: Period and Amplitude

$$y(x) = 4\sin(2x)$$

Example: Period and Amplitude

Solution: For

$$y(x) = 4\sin(2x)$$

The amplitude is 4, so solution oscillates between −4 and

$$y(x) = 4\sin(2x)$$

- The amplitude is 4, so solution oscillates between −4 and
- The **frequency** is 2

$$y(x) = 4\sin(2x)$$

- The amplitude is 4, so solution oscillates between −4 and
- The **frequency** is 2
- To find the period, let x = T

$$y(x) = 4\sin(2x)$$

- The amplitude is 4, so solution oscillates between −4 and
- The **frequency** is 2
- To find the period, let x = T
 - The argument of sine is 2x, and the period of the sine function is 2π

$$y(x) = 4\sin(2x)$$

- The amplitude is 4, so solution oscillates between −4 and
- The **frequency** is 2
- To find the period, let x = T
 - The argument of sine is 2x, and the period of the sine function is 2π
 - The **period**, T, satisfies

$$2T = 2\pi$$
 so $T = \pi$

Solution: For

$$y(x) = 4\sin(2x)$$

- The amplitude is 4, so solution oscillates between −4 and
- The **frequency** is 2
- To find the period, let x = T
 - The argument of sine is 2x, and the period of the sine function is 2π
 - \bullet The **period**, T, satisfies

$$2T = 2\pi$$
 so $T = \pi$

Alternately,

$$T = \frac{2\pi}{\omega} = \frac{2\pi}{2} = \pi$$

Vertical Shift and Amplitude
Frequency and Period
Phase Shift
Examples
Phase Shift of Half a Period
Equivalent Sine and Cosine Models
Return to Annual Temperature Variation
Other Examples

Example: Period and Amplitude

$$y(x) = 4\sin(2x)$$

Solution (cont): For

$$y(x) = 4\sin(2x)$$

• The model begins at 0 when x = 0 and completes period at $x = \pi$

$$y(x) = 4\sin(2x)$$

- The model begins at 0 when x = 0 and completes period at $x = \pi$
- Achieves a maximum of 4 when the argument $2x = \frac{\pi}{2}$ or $x = \frac{\pi}{4}$

$$y(x) = 4\sin(2x)$$

- The model begins at 0 when x = 0 and completes period at $x = \pi$
- Achieves a maximum of 4 when the argument $2x = \frac{\pi}{2}$ or $x = \frac{\pi}{4}$
- Achieves a minimum of -4 when the argument $2x = \frac{3\pi}{2}$ or $x = \frac{3\pi}{4}$

$$y(x) = 4\sin(2x)$$

- The model begins at 0 when x = 0 and completes period at $x = \pi$
- Achieves a maximum of 4 when the argument $2x = \frac{\pi}{2}$ or $x = \frac{\pi}{4}$
- Achieves a minimum of -4 when the argument $2x = \frac{3\pi}{2}$ or $x = \frac{3\pi}{4}$
- By periodicity, other maxima at $x = \pi + \frac{\pi}{4} = \frac{5\pi}{4}$, $x = -\pi + \frac{\pi}{4} = -\frac{3\pi}{4}$, and $x = -\frac{9\pi}{4}$

$$y(x) = 4\sin(2x)$$

- The model begins at 0 when x = 0 and completes period at $x = \pi$
- Achieves a maximum of 4 when the argument $2x = \frac{\pi}{2}$ or $x = \frac{\pi}{4}$
- Achieves a minimum of -4 when the argument $2x = \frac{3\pi}{2}$ or $x = \frac{3\pi}{4}$
- By periodicity, other maxima at $x = \pi + \frac{\pi}{4} = \frac{5\pi}{4}$, $x = -\pi + \frac{\pi}{4} = -\frac{3\pi}{4}$, and $x = -\frac{9\pi}{4}$
- Similarly, there are other minima at $x = -\frac{5\pi}{4}, -\frac{\pi}{4}$, and $\frac{7\pi}{4}$.

Solution (cont): For

$$y(x) = 4\sin(2x)$$

- The model begins at 0 when x = 0 and completes period at $x = \pi$
- Achieves a maximum of 4 when the argument $2x = \frac{\pi}{2}$ or $x = \frac{\pi}{4}$
- Achieves a minimum of -4 when the argument $2x = \frac{3\pi}{2}$ or $x = \frac{3\pi}{4}$
- By periodicity, other maxima at $x = \pi + \frac{\pi}{4} = \frac{5\pi}{4}$, $x = -\pi + \frac{\pi}{4} = -\frac{3\pi}{4}$, and $x = -\frac{9\pi}{4}$
- Similarly, there are other minima at $x = -\frac{5\pi}{4}, -\frac{\pi}{4}$, and $\frac{7\pi}{4}$.

(31/67)

• Sine is an odd function

Graph for

Example 2: Consider the model

$$y(x) = 3\sin(2x) - 2$$

Skip Example

Example 2: Consider the model

$$y(x) = 3\sin(2x) - 2$$

Skip Example

• Find the vertical shift, amplitude, and period

Example 2: Consider the model

$$y(x) = 3\sin(2x) - 2$$

Skip Example

- Find the vertical shift, amplitude, and period
- Determine all maxima and minima for $x \in [-2\pi, 2\pi]$

Example 2: Consider the model

$$y(x) = 3\sin(2x) - 2$$

Skip Example

- Find the vertical shift, amplitude, and period
- Determine all maxima and minima for $x \in [-2\pi, 2\pi]$
- Sketch a graph

$$y(x) = 3\sin(2x) - 2$$

Solution: For

$$y(x) = 3\sin(2x) - 2$$

• The vertical shift is -2

Example: Sine Function

$$y(x) = 3\sin(2x) - 2$$

- The vertical shift is -2
- The amplitude is 3, so solution oscillates between −5 and
 1

Example: Sine Function

$$y(x) = 3\sin(2x) - 2$$

- The vertical shift is -2
- The amplitude is 3, so solution oscillates between −5 and
 1
- The **frequency** is 2

Example: Sine Function

$$y(x) = 3\sin(2x) - 2$$

- The vertical shift is -2
- The amplitude is 3, so solution oscillates between −5 and
 1
- The **frequency** is 2
- The period, T, satisfies

$$T = \frac{2\pi}{\omega} = \frac{2\pi}{2} = \pi$$

$$y(x) = 3\sin(2x) - 2$$

Solution (cont): For

$$y(x) = 3\sin(2x) - 2$$

• The model achieves a maximum of 1 when the argument $2x = \frac{\pi}{2}$ or $x = \frac{\pi}{4}$

$$y(x) = 3\sin(2x) - 2$$

- The model achieves a maximum of 1 when the argument $2x = \frac{\pi}{2}$ or $x = \frac{\pi}{4}$
- The model achieves a minimum of -5 when the argument $2x = \frac{3\pi}{2}$ or $x = \frac{3\pi}{4}$

$$y(x) = 3\sin(2x) - 2$$

- The model achieves a maximum of 1 when the argument $2x = \frac{\pi}{2}$ or $x = \frac{\pi}{4}$
- The model achieves a minimum of -5 when the argument $2x = \frac{3\pi}{2}$ or $x = \frac{3\pi}{4}$
- By periodicity, other maxima at $x = \pi + \frac{\pi}{4} = \frac{5\pi}{4}$, $x = -\pi + \frac{\pi}{4} = -\frac{3\pi}{4}$, and $x = -\frac{9\pi}{4}$

$$y(x) = 3\sin(2x) - 2$$

- The model achieves a maximum of 1 when the argument $2x = \frac{\pi}{2} \text{ or } x = \frac{\pi}{4}$
- The model achieves a minimum of -5 when the argument $2x = \frac{3\pi}{2} \text{ or } x = \frac{3\pi}{4}$
- By periodicity, other maxima at $x = \pi + \frac{\pi}{4} = \frac{5\pi}{4}$, $x = -\pi + \frac{\pi}{4} = -\frac{3\pi}{4}$, and $x = -\frac{9\pi}{4}$
- Similarly, there are other minima at $x = -\frac{5\pi}{4}, -\frac{\pi}{4}$, and $\frac{7\pi}{4}$

To **graph** a sine or cosine model, divide the period into 4 even parts

To **graph** a sine or cosine model, divide the period into 4 even parts

For this example, take $x = 0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}, \pi$

To **graph** a sine or cosine model, divide the period into 4 even parts

$$y(0) = 3\sin(2(0)) - 2 = 3\sin(0) - 2 = -2,$$

To **graph** a sine or cosine model, divide the period into 4 even parts

$$y(0) = 3\sin(2(0)) - 2 = 3\sin(0) - 2 = -2,$$

 $y(\pi/4) = 3\sin(2(\pi/4)) - 2 = 3\sin(\pi/2) - 2 = 1,$

To **graph** a sine or cosine model, divide the period into 4 even parts

$$y(0) = 3\sin(2(0)) - 2 = 3\sin(0) - 2 = -2,$$

 $y(\pi/4) = 3\sin(2(\pi/4)) - 2 = 3\sin(\pi/2) - 2 = 1,$
 $y(\pi/2) = 3\sin(2(\pi/2)) - 2 = 3\sin(\pi) - 2 = -2,$

4日 5 4周 5 4 3 5 4 3 5

Example: Sine Function

To **graph** a sine or cosine model, divide the period into 4 even parts

$$y(0) = 3\sin(2(0)) - 2 = 3\sin(0) - 2 = -2,$$

$$y(\pi/4) = 3\sin(2(\pi/4)) - 2 = 3\sin(\pi/2) - 2 = 1,$$

$$y(\pi/2) = 3\sin(2(\pi/2)) - 2 = 3\sin(\pi) - 2 = -2,$$

$$y(3\pi/4) = 3\sin(2(3\pi/4)) - 2 = 3\sin(3\pi/2) - 2 = -5,$$

To graph a sine or cosine model, divide the period into 4 even parts

For this example, take $x=0,\frac{\pi}{4},\frac{\pi}{2},\frac{3\pi}{4},\pi$

$$y(0) = 3\sin(2(0)) - 2 = 3\sin(0) - 2 = -2,$$

$$y(\pi/4) = 3\sin(2(\pi/4)) - 2 = 3\sin(\pi/2) - 2 = 1,$$

$$y(\pi/2) = 3\sin(2(\pi/2)) - 2 = 3\sin(\pi) - 2 = -2,$$

$$y(3\pi/4) = 3\sin(2(3\pi/4)) - 2 = 3\sin(3\pi/2) - 2 = -5,$$

$$y(\pi) = 3\sin(2(\pi)) - 2 = 3\sin(2\pi) - 2 = -2.$$

(36/67)

Frequency and Period Examples Phase Shift of Half a Period Other Examples

Example: Sine Function

Graph for

Example: Vertical Shift with Cosine Function

Example 3: Consider the model

$$y(x) = 3 - 2\cos(3x)$$

Example 3: Consider the model

$$y(x) = 3 - 2\cos(3x)$$

Skip Example

• Find the vertical shift, amplitude, and period

Example 3: Consider the model

$$y(x) = 3 - 2\cos(3x)$$

- Find the vertical shift, amplitude, and period
- Determine all maxima and minima for $x \in [0, 2\pi]$

Example 3: Consider the model

$$y(x) = 3 - 2\cos(3x)$$

- Find the vertical shift, amplitude, and period
- Determine all maxima and minima for $x \in [0, 2\pi]$
- Sketch a graph

Example: Vertical Shift with Cosine Function

$$y(x) = 3 - 2\cos(3x)$$

Example: Vertical Shift with Cosine Function

Solution: For

$$y(x) = 3 - 2\cos(3x)$$

• The vertical shift is 3

$$y(x) = 3 - 2\cos(3x)$$

- The vertical shift is 3
- The **amplitude** is 2 (noting that there is a negative sign), so solution oscillates between 1 and 5

6

Example: Vertical Shift with Cosine Function

$$y(x) = 3 - 2\cos(3x)$$

- The vertical shift is 3
- The amplitude is 2 (noting that there is a negative sign), so solution oscillates between 1 and 5
- The **frequency** is 3

2

Example: Vertical Shift with Cosine Function

$$y(x) = 3 - 2\cos(3x)$$

- The vertical shift is 3
- The amplitude is 2 (noting that there is a negative sign), so solution oscillates between 1 and 5
- The **frequency** is 3
- The period, T, satisfies

$$T = \frac{2\pi}{\omega} = \frac{2\pi}{3}$$

Example: Vertical Shift with Cosine Function

$$y(x) = 3 - 2\cos(3x)$$

Solution (cont): For

$$y(x) = 3 - 2\cos(3x)$$

• The model achieves a minimum of 1 when the argument 3x = 0 or x = 0

$$y(x) = 3 - 2\cos(3x)$$

- The model achieves a minimum of 1 when the argument 3x = 0 or x = 0
- The model achieves a maximum of 5 when the argument $3x = \pi$ or $x = \frac{\pi}{3}$

$$y(x) = 3 - 2\cos(3x)$$

- The model achieves a minimum of 1 when the argument 3x = 0 or x = 0
- The model achieves a maximum of 5 when the argument $3x = \pi$ or $x = \frac{\pi}{3}$
- By periodicity, the minima in the domain are $x = 0, \frac{2\pi}{3}, \frac{4\pi}{3}$, and 2π

$$y(x) = 3 - 2\cos(3x)$$

- The model achieves a minimum of 1 when the argument 3x = 0 or x = 0
- The model achieves a maximum of 5 when the argument $3x = \pi$ or $x = \frac{\pi}{3}$
- By periodicity, the minima in the domain are $x = 0, \frac{2\pi}{3}, \frac{4\pi}{3}$, and 2π
- By periodicity, the maxima in the domain are $x = \frac{\pi}{3}, \pi$, and $\frac{5\pi}{3}$

$$y(x) = 3 - 2\cos(3x)$$

- The model achieves a minimum of 1 when the argument 3x = 0 or x = 0
- The model achieves a maximum of 5 when the argument $3x = \pi$ or $x = \frac{\pi}{3}$
- By periodicity, the minima in the domain are $x = 0, \frac{2\pi}{3}, \frac{4\pi}{3}$, and 2π
- By periodicity, the maxima in the domain are $x = \frac{\pi}{3}, \pi$, and $\frac{5\pi}{3}$
- Note that this is an **even function**

Graph for

By inserting a **phase shift** of half a period, the constant for the **amplitude** becomes positive

$$y(x) = 3 + 2\cos\left(3\left(x - \frac{\pi}{3}\right)\right).$$

By inserting a **phase shift** of half a period, the constant for the **amplitude** becomes positive

$$y(x) = 3 + 2\cos(3(x - \frac{\pi}{3})).$$

Show this by employing the angle subtraction identity for the cosine function

By inserting a **phase shift** of half a period, the constant for the **amplitude** becomes positive

$$y(x) = 3 + 2\cos\left(3\left(x - \frac{\pi}{3}\right)\right).$$

Show this by employing the angle subtraction identity for the cosine function

$$y(x) = 3 + 2\cos(3(x - \frac{\pi}{3})),$$

= $3 + 2\cos(3x - \pi),$

By inserting a **phase shift** of half a period, the constant for the **amplitude** becomes positive

$$y(x) = 3 + 2\cos\left(3\left(x - \frac{\pi}{3}\right)\right).$$

Show this by employing the angle subtraction identity for the cosine function

$$y(x) = 3 + 2\cos(3(x - \frac{\pi}{3})),$$

= 3 + 2\cos(3x - \pi),
= 3 + 2(\cos(3x)\cos(\pi) + \sin(3x)\sin(\pi)),

By inserting a **phase shift** of half a period, the constant for the **amplitude** becomes positive

$$y(x) = 3 + 2\cos\left(3\left(x - \frac{\pi}{3}\right)\right).$$

Show this by employing the angle subtraction identity for the cosine function

$$y(x) = 3 + 2\cos(3(x - \frac{\pi}{3})),$$

= 3 + 2\cos(3x - \pi),
= 3 + 2(\cos(3x)\cos(\pi) + \sin(3x)\sin(\pi)),
= 3 - 2\cos(3x),

since $\cos(\pi) = -1$ and $\sin(\pi) = 0$

Phase Shift in Models

Phase Shift of Half a Period

A phase shift of half a period creates an equivalent sine or cosine model with the sign of the amplitude reversed

Phase Shift in Models

Phase Shift of Half a Period

A phase shift of half a period creates an equivalent sine or cosine model with the sign of the amplitude reversed

Models Matching Data

 Phase shifts are important matching data in periodic models

Phase Shift in Models

Phase Shift of Half a Period

A phase shift of half a period creates an equivalent sine or cosine model with the sign of the amplitude reversed

Models Matching Data

- Phase shifts are important matching data in periodic models
- The **cosine model** is easiest to match, since the maximum of the cosine function occurs when the argument is zero

Example: Cosine Model with Phase Shift

Example 3: Consider the model

$$y(x) = 4 + 6\cos\left(\frac{1}{2}(x-\pi)\right), \qquad x \in [-4\pi, 4\pi]$$

Example 3: Consider the model

$$y(x) = 4 + 6\cos\left(\frac{1}{2}(x-\pi)\right), \qquad x \in [-4\pi, 4\pi]$$

Skip Example

• Find the vertical shift, amplitude, period, and phase shift

Example 3: Consider the model

$$y(x) = 4 + 6\cos\left(\frac{1}{2}(x-\pi)\right), \qquad x \in [-4\pi, 4\pi]$$

- Find the vertical shift, amplitude, period, and phase shift
- Determine all maxima and minima for $x \in [0, 2\pi]$

Example 3: Consider the model

$$y(x) = 4 + 6\cos\left(\frac{1}{2}(x - \pi)\right), \quad x \in [-4\pi, 4\pi]$$

- Find the vertical shift, amplitude, period, and phase shift
- Determine all maxima and minima for $x \in [0, 2\pi]$
- Sketch a graph

Example 3: Consider the model

$$y(x) = 4 + 6\cos\left(\frac{1}{2}(x - \pi)\right), \quad x \in [-4\pi, 4\pi]$$

- Find the vertical shift, amplitude, period, and phase shift
- Determine all maxima and minima for $x \in [0, 2\pi]$
- Sketch a graph
- Find the equivalent sine model

Example: Cosine Model with Phase Shift

Solution: Rewrite the model

$$y(x) = 4 + 6\cos\left(\frac{1}{2}(x - \pi)\right)$$

Solution: Rewrite the model

$$y(x) = 4 + 6\cos\left(\frac{1}{2}(x - \pi)\right)$$

• The **vertical shift** is A = 4

$$y(x) = 4 + 6\cos\left(\frac{1}{2}(x - \pi)\right)$$

- The **vertical shift** is A = 4
- The **amplitude** is B = 6, so y(x) oscillates between -2 and 10

2

Example: Cosine Model with Phase Shift

$$y(x) = 4 + 6\cos\left(\frac{1}{2}(x - \pi)\right)$$

- The **vertical shift** is A = 4
- The **amplitude** is B = 6, so y(x) oscillates between -2 and 10
- The **frequency** is $\omega = \frac{1}{2}$

$$y(x) = 4 + 6\cos\left(\frac{1}{2}(x - \pi)\right)$$

- The **vertical shift** is A = 4
- The **amplitude** is B = 6, so y(x) oscillates between -2 and 10
- The **frequency** is $\omega = \frac{1}{2}$
- The **period**, T, satisfies

$$T = \frac{2\pi}{\omega} = 4\pi$$

Solution: Rewrite the model

$$y(x) = 4 + 6\cos\left(\frac{1}{2}(x - \pi)\right)$$

- The **vertical shift** is A = 4
- The **amplitude** is B = 6, so y(x) oscillates between -2 and 10
- The **frequency** is $\omega = \frac{1}{2}$
- The **period**, T, satisfies

$$T = \frac{2\pi}{\omega} = 4\pi$$

• The phase shift is $\phi = \pi$, which means the cosine model is shifted horizontally $x = \pi$ units to the right

$$y(x) = 4 + 6\cos\left(\frac{1}{2}(x - \pi)\right)$$

- The **vertical shift** is A = 4
- The **amplitude** is B = 6, so y(x) oscillates between -2 and 10
- The **frequency** is $\omega = \frac{1}{2}$
- The **period**, T, satisfies

$$T = \frac{2\pi}{\omega} = 4\pi$$

- The phase shift is $\phi = \pi$, which means the cosine model is shifted horizontally $x = \pi$ units to the right
- Since cosine has a maximum with argument zero, a maximum will occur at $x=\pi$

Solution (cont): For graphing,

$$y(x) = 4 + 6\cos\left(\frac{1}{2}(x - \pi)\right)$$

$$y(\pi) = 4 + 6\cos\left(\frac{1}{2}(\pi - \pi)\right) = 4 + 6\cos(0) = 4 + 6(1) = 10,$$

Solution (cont): For graphing,

$$y(x) = 4 + 6\cos\left(\frac{1}{2}(x - \pi)\right)$$

$$y(\pi) = 4 + 6\cos\left(\frac{1}{2}(\pi - \pi)\right) = 4 + 6\cos(0) = 4 + 6(1) = 10,$$

$$y(2\pi) = 4 + 6\cos\left(\frac{1}{2}(2\pi - \pi)\right) = 4 + 6\cos\left(\frac{\pi}{2}\right) = 4 + 6(0) = 4,$$

Solution (cont): For graphing,

$$y(x) = 4 + 6\cos\left(\frac{1}{2}(x - \pi)\right)$$

$$y(\pi) = 4 + 6\cos\left(\frac{1}{2}(\pi - \pi)\right) = 4 + 6\cos(0) = 4 + 6(1) = 10,$$

$$y(2\pi) = 4 + 6\cos\left(\frac{1}{2}(2\pi - \pi)\right) = 4 + 6\cos\left(\frac{\pi}{2}\right) = 4 + 6(0) = 4,$$

$$y(3\pi) = 4 + 6\cos\left(\frac{1}{2}(2\pi - \pi)\right) = 4 + 6\cos(\pi) = 4 + 6(-1) = -2,$$

Solution (cont): For graphing,

$$y(x) = 4 + 6\cos\left(\frac{1}{2}(x - \pi)\right)$$

$$y(\pi) = 4 + 6\cos\left(\frac{1}{2}(\pi - \pi)\right) = 4 + 6\cos(0) = 4 + 6(1) = 10,$$

$$y(2\pi) = 4 + 6\cos\left(\frac{1}{2}(2\pi - \pi)\right) = 4 + 6\cos\left(\frac{\pi}{2}\right) = 4 + 6(0) = 4,$$

$$y(3\pi) = 4 + 6\cos\left(\frac{1}{2}(2\pi - \pi)\right) = 4 + 6\cos(\pi) = 4 + 6(-1) = -2,$$

$$y(4\pi) = 4 + 6\cos\left(\frac{1}{2}(2\pi - \pi)\right) = 4 + 6\cos\left(\frac{3\pi}{2}\right) = 4 + 6(0) = 4,$$

Solution (cont): For graphing,

$$y(x) = 4 + 6\cos\left(\frac{1}{2}(x - \pi)\right)$$

$$y(\pi) = 4 + 6\cos\left(\frac{1}{2}(\pi - \pi)\right) = 4 + 6\cos(0) = 4 + 6(1) = 10,$$

$$y(2\pi) = 4 + 6\cos\left(\frac{1}{2}(2\pi - \pi)\right) = 4 + 6\cos\left(\frac{\pi}{2}\right) = 4 + 6(0) = 4,$$

$$y(3\pi) = 4 + 6\cos\left(\frac{1}{2}(2\pi - \pi)\right) = 4 + 6\cos(\pi) = 4 + 6(-1) = -2,$$

$$y(4\pi) = 4 + 6\cos\left(\frac{1}{2}(2\pi - \pi)\right) = 4 + 6\cos\left(\frac{3\pi}{2}\right) = 4 + 6(0) = 4,$$

$$y(5\pi) = 4 + 6\cos\left(\frac{1}{2}(2\pi - \pi)\right) = 4 + 6\cos(2\pi) = 4 + 6(1) = 10$$

Graph for

Solution (cont): The appropriate sine model has the same vertical shift, A, amplitude, B, and frequency, ω ,

$$y(x) = 4 + 6\sin\left(\frac{1}{2}(x - \phi)\right)$$

Solution (cont): The appropriate sine model has the same vertical shift, A, amplitude, B, and frequency, ω ,

$$y(x) = 4 + 6\sin\left(\frac{1}{2}(x - \phi)\right)$$

Must find appropriate **phase shift**, ϕ

Solution (cont): The appropriate sine model has the same vertical shift, A, amplitude, B, and frequency, ω ,

$$y(x) = 4 + 6\sin\left(\frac{1}{2}(x - \phi)\right)$$

Must find appropriate **phase shift**, ϕ

Recall the cosine function is horizontally shifted to the left of the sine function by $\frac{\pi}{2}$

Solution (cont): The appropriate sine model has the same vertical shift, A, amplitude, B, and frequency, ω ,

$$y(x) = 4 + 6\sin\left(\frac{1}{2}(x - \phi)\right)$$

Must find appropriate **phase shift**, ϕ

Recall the cosine function is horizontally shifted to the left of the sine function by $\frac{\pi}{2}$

$$\cos\left(\frac{1}{2}(x-\pi)\right) = \sin\left(\frac{1}{2}(x-\pi) + \frac{\pi}{2}\right) = \sin\left(\frac{1}{2}(x-\phi)\right)$$

Solution (cont): The appropriate sine model has the same vertical shift, A, amplitude, B, and frequency, ω ,

$$y(x) = 4 + 6\sin\left(\frac{1}{2}(x - \phi)\right)$$

Must find appropriate phase shift, ϕ

Recall the cosine function is horizontally shifted to the left of the sine function by $\frac{\pi}{2}$

$$\cos\left(\frac{1}{2}(x-\pi)\right) = \sin\left(\frac{1}{2}(x-\pi) + \frac{\pi}{2}\right) = \sin\left(\frac{1}{2}(x-\phi)\right)$$

It follows that we want

$$-\frac{\pi}{2} + \frac{\pi}{2} = -\frac{\phi}{2}$$

or $\phi = 0$

Example: Cosine Model with Phase Shift

Solution (cont): The equivalent sine model is

$$y(x) = 4 + 6\sin\left(\frac{x}{2}\right)$$

Solution (cont): The equivalent sine model is

$$y(x) = 4 + 6\sin\left(\frac{x}{2}\right)$$

Thus, the original phase-shifted cosine model

$$y(x) = 4 + 6\cos\left(\frac{1}{2}(x - \pi)\right)$$

is the same as an unshifted sine model

Equivalent Sine and Cosine Models

Phase Shift for Equivalent Sine and Cosine Models

Suppose that the sine and cosine models are equivalent, so

$$\sin(\omega(x-\phi_1)) = \cos(\omega(x-\phi_2)).$$

Equivalent Sine and Cosine Models

Phase Shift for Equivalent Sine and Cosine Models

Suppose that the sine and cosine models are equivalent, so

$$\sin(\omega(x-\phi_1)) = \cos(\omega(x-\phi_2)).$$

The relationship between the **phase shifts**, ϕ_1 and ϕ_2 satisfies:

$$\phi_1 = \phi_2 - \frac{\pi}{2\omega}.$$

Equivalent Sine and Cosine Models

Phase Shift for Equivalent Sine and Cosine Models

Suppose that the sine and cosine models are equivalent, so

$$\sin(\omega(x-\phi_1)) = \cos(\omega(x-\phi_2)).$$

The relationship between the **phase shifts**, ϕ_1 and ϕ_2 satisfies:

$$\phi_1 = \phi_2 - \frac{\pi}{2\omega}.$$

Note: Remember that the phase shift is not unique. It can vary by integer multiples of the period, $T = \frac{2\pi}{\omega_{\parallel}}$

Return to Annual Temperature Model

Annual Temperature Model: Started section with data and graphs of average monthly temperatures for Chicago and San Diego

Annual Temperature Model: Started section with data and graphs of average monthly temperatures for Chicago and San Diego

• Fit data to cosine model for temperature, T,

$$T(m) = A + B\cos(\omega(m - \phi))$$

where m is in months

Annual Temperature Model: Started section with data and graphs of average monthly temperatures for Chicago and San Diego

• Fit data to cosine model for temperature, T,

$$T(m) = A + B\cos(\omega(m - \phi))$$

where m is in months

• Find best model parameters, A, B, ω , and ϕ

Annual Temperature Model: Started section with data and graphs of average monthly temperatures for Chicago and San Diego

 \bullet Fit data to cosine model for temperature, T,

$$T(m) = A + B\cos(\omega(m - \phi))$$

where m is in months

- Find best model parameters, A, B, ω , and ϕ
- The frequency, ω , is constrained by a period of 12 months

Annual Temperature Model: Started section with data and graphs of average monthly temperatures for Chicago and San Diego

• Fit data to cosine model for temperature, T,

$$T(m) = A + B\cos(\omega(m - \phi))$$

where m is in months

- Find best model parameters, A, B, ω , and ϕ
- The frequency, ω , is constrained by a period of 12 months
- It follows that

$$12\omega = 2\pi$$
 or $\omega = \frac{\pi}{6} = 0.5236$

$$T(m) = A + B\cos(\omega(m - \phi))$$

Annual Temperature Model:

$$T(m) = A + B\cos(\omega(m - \phi))$$

• Choose A to be the average annual temperature

$$T(m) = A + B\cos(\omega(m - \phi))$$

- Choose A to be the average annual temperature
 - Average for San Diego is A = 64.29
 - Average for Chicago is A = 49.17

$$T(m) = A + B\cos(\omega(m - \phi))$$

- Choose A to be the average annual temperature
 - Average for San Diego is A = 64.29
 - Average for Chicago is A = 49.17
- Perform least squares best fit to data for B and ϕ

$$T(m) = A + B\cos(\omega(m - \phi))$$

- Choose A to be the average annual temperature
 - Average for San Diego is A = 64.29
 - Average for Chicago is A = 49.17
- Perform least squares best fit to data for B and ϕ
 - For San Diego, obtain B = 7.29 and $\phi = 6.74$
 - For Chicago, obtain B=25.51 and $\phi=6.15$

Annual Temperature Model for San Diego:

$$T(m) = 64.29 + 7.29\cos(0.5236(m - 6.74))$$

Annual Temperature Model for Chicago:

$$T(m) = 49.17 + 25.51\cos(0.5236(m - 6.15))$$

Annual Temperature Model for San Diego:

$$T(m) = 64.29 + 7.29\cos(0.5236(m - 6.74))$$

Annual Temperature Model for Chicago:

$$T(m) = 49.17 + 25.51\cos(0.5236(m - 6.15))$$

• The **amplitude** of models

Annual Temperature Model for San Diego:

$$T(m) = 64.29 + 7.29\cos(0.5236(m - 6.74))$$

Annual Temperature Model for Chicago:

$$T(m) = 49.17 + 25.51\cos(0.5236(m - 6.15))$$

- The **amplitude** of models
 - Temperature in San Diego only varies ± 7.29 °F, giving it a "Mediterranean" climate
 - Temperature in Chicago varies ±25.51°F, indicating cold winters and hot summers

Annual Temperature Model for San Diego:

$$T(m) = 64.29 + 7.29\cos(0.5236(m - 6.74))$$

Annual Temperature Model for Chicago:

$$T(m) = 49.17 + 25.51\cos(0.5236(m - 6.15))$$

Annual Temperature Model for San Diego:

$$T(m) = 64.29 + 7.29\cos(0.5236(m - 6.74))$$

Annual Temperature Model for Chicago:

$$T(m) = 49.17 + 25.51\cos(0.5236(m - 6.15))$$

• The phase shift for the models

Annual Temperature Model for San Diego:

$$T(m) = 64.29 + 7.29\cos(0.5236(m - 6.74))$$

Annual Temperature Model for Chicago:

$$T(m) = 49.17 + 25.51\cos(0.5236(m - 6.15))$$

- The **phase shift** for the models
 - For San Diego, the phase shift of $\phi=6.74$, so the maximum temperature occurs at 6.74 months (late July)
 - For Chicago, the phase shift of $\phi=6.15$, so the maximum temperature occurs at 6.15 months (early July)

Convert Cosine Model to Sine Model:

$$T(m) = A + B\sin(\omega(m - \phi_2))$$

Convert Cosine Model to Sine Model:

$$T(m) = A + B\sin(\omega(m - \phi_2))$$

Formula shows

$$\phi_2 = \phi - \frac{\pi}{2\omega}$$

where ϕ is from the cosine model

Convert Cosine Model to Sine Model:

$$T(m) = A + B\sin(\omega(m - \phi_2))$$

Formula shows

$$\phi_2 = \phi - \frac{\pi}{2\omega}$$

where ϕ is from the cosine model

- For San Diego, $\phi_2 = 3.74$
- For Chicago, $\phi_2 = 3.15$

Convert Cosine Model to Sine Model:

$$T(m) = A + B\sin(\omega(m - \phi_2))$$

Formula shows

$$\phi_2 = \phi - \frac{\pi}{2\omega}$$

where ϕ is from the cosine model

- For San Diego, $\phi_2 = 3.74$
- For Chicago, $\phi_2 = 3.15$
- Sine Model for San Diego:

$$T(m) = 64.29 + 7.29\sin(0.5236(m - 3.74))$$

Convert Cosine Model to Sine Model:

$$T(m) = A + B\sin(\omega(m - \phi_2))$$

Formula shows

$$\phi_2 = \phi - \frac{\pi}{2\omega}$$

where ϕ is from the cosine model

- For San Diego, $\phi_2 = 3.74$
- For Chicago, $\phi_2 = 3.15$
- Sine Model for San Diego:

$$T(m) = 64.29 + 7.29\sin(0.5236(m - 3.74))$$

Sine Model for Chicago:

$$T(m) = 49.17 + 25.51\sin(0.5236(m - 3.15))$$

Vertical Shift and Amplitude
Frequency and Period
Phase Shift
Examples
Phase Shift of Half a Period
Equivalent Sine and Cosine Models
Return to Annual Temperature Variation
Other Examples

Population Model with Phase Shift

Population Model: Suppose population data show a 10 year periodic behavior with a maximum population of 26 (thousand) at t = 2 and a minimum population of 14 (thousand) at t = 7

Population Model: Suppose population data show a 10 year periodic behavior with a maximum population of 26 (thousand) at t = 2 and a minimum population of 14 (thousand) at t = 7

Assume a model of the form

$$y(t) = A + B \sin(\omega(t - \phi))$$

Skip Example

Population Model: Suppose population data show a 10 year periodic behavior with a maximum population of 26 (thousand) at t = 2 and a minimum population of 14 (thousand) at t = 7

Assume a model of the form

$$y(t) = A + B \sin(\omega(t - \phi))$$

Skip Example

• Find the constants A, B, ω , and ϕ with B > 0, $\omega > 0$, and $\phi \in [0, 10)$

Population Model: Suppose population data show a 10 year periodic behavior with a maximum population of 26 (thousand) at t = 2 and a minimum population of 14 (thousand) at t = 7

Assume a model of the form

$$y(t) = A + B \sin(\omega(t - \phi))$$

Skip Example

- Find the constants A, B, ω , and ϕ with $B > 0, \omega > 0$, and $\phi \in [0, 10)$
- Since ϕ is not unique, find values of ϕ with $\phi \in [-10, 0)$ and $\phi \in [10, 20)$

Population Model: Suppose population data show a 10 year periodic behavior with a maximum population of 26 (thousand) at t = 2 and a minimum population of 14 (thousand) at t = 7

Assume a model of the form

$$y(t) = A + B \sin(\omega(t - \phi))$$

Skip Example

- Find the constants A, B, ω , and ϕ with $B > 0, \omega > 0$, and $\phi \in [0, 10)$
- Since ϕ is not unique, find values of ϕ with $\phi \in [-10, 0)$ and $\phi \in [10, 20)$
- Sketch a graph

Population Model: Suppose population data show a 10 year periodic behavior with a maximum population of 26 (thousand) at t = 2 and a minimum population of 14 (thousand) at t = 7

Assume a model of the form

$$y(t) = A + B \sin(\omega(t - \phi))$$

Skip Example

- Find the constants A, B, ω , and ϕ with $B > 0, \omega > 0$, and $\phi \in [0, 10)$
- Since ϕ is not unique, find values of ϕ with $\phi \in [-10, 0)$ and $\phi \in [10, 20)$
- Sketch a graph
- Find the equivalent cosine model

(56/67)

Vertical Shift and Amplitude
Frequency and Period
Phase Shift
Examples
Phase Shift of Half a Period
Equivalent Sine and Cosine Models
Return to Annual Temperature Variation
Other Examples

Population Model with Phase Shift

Solution: Compute the various parameters

Solution: Compute the various parameters

• The vertical shift satisfies

$$A = \frac{26 + 14}{2} = 20$$

Solution: Compute the various parameters

• The vertical shift satisfies

$$A = \frac{26 + 14}{2} = 20$$

• The **amplitude** satisfies

$$B = 26 - 20 = 6$$

Solution: Compute the various parameters

• The vertical shift satisfies

$$A = \frac{26 + 14}{2} = 20$$

• The amplitude satisfies

$$B = 26 - 20 = 6$$

• Since the **period** is T = 10 years, the **frequency**, ω , satisfies

$$\omega = \frac{2\pi}{10} = \frac{\pi}{5}$$

Vertical Shift and Amplitude
Frequency and Period
Phase Shift
Examples
Phase Shift of Half a Period
Equivalent Sine and Cosine Models
Return to Annual Temperature Variation
Other Examples

Population Model with Phase Shift

Solution (cont): Compute the phase shift

Solution (cont): Compute the phase shift

• The maximum of 26 occurs at t = 2, so the model satisfies:

$$y(2) = 26 = 20 + 6 \sin\left(\frac{\pi}{5}(2 - \phi)\right)$$

Solution (cont): Compute the phase shift

• The maximum of 26 occurs at t = 2, so the model satisfies:

$$y(2) = 26 = 20 + 6 \sin\left(\frac{\pi}{5}(2 - \phi)\right)$$

Clearly

$$\sin\left(\frac{\pi}{5}(2-\phi)\right) = 1$$

Solution (cont): Compute the phase shift

• The maximum of 26 occurs at t = 2, so the model satisfies:

$$y(2) = 26 = 20 + 6 \sin\left(\frac{\pi}{5}(2 - \phi)\right)$$

Clearly

$$\sin\left(\frac{\pi}{5}(2-\phi)\right) = 1$$

• The sine function is at its maximum when its argument is $\frac{\pi}{2}$, so

$$\begin{array}{rcl} \frac{\pi}{5}(2-\phi) & = & \frac{\pi}{2} \\ 2-\phi & = & \frac{5}{2} \\ \phi & = & -\frac{1}{2} \end{array}$$

Solution (cont): Continuing, the phase shift was

$$\phi = -\frac{1}{2}$$

Solution (cont): Continuing, the phase shift was

$$\phi = -\frac{1}{2}$$

• This value of ϕ is not in the interval [0, 10)

Solution (cont): Continuing, the phase shift was

$$\phi = -\frac{1}{2}$$

- This value of ϕ is not in the interval [0, 10)
- The periodicity, T=10, of the model is also reflected in the phase shift, ϕ

Solution (cont): Continuing, the phase shift was

$$\phi = -\frac{1}{2}$$

- This value of ϕ is not in the interval [0, 10)
- The periodicity, T=10, of the model is also reflected in the phase shift, ϕ

•

$$\phi = -\frac{1}{2} + 10 n$$
, n an integer $\phi = \dots -10.5, -0.5, 9.5, 19.5, \dots$

Solution (cont): Continuing, the phase shift was

$$\phi = -\frac{1}{2}$$

- This value of ϕ is not in the interval [0, 10)
- The periodicity, T=10, of the model is also reflected in the phase shift, ϕ

0

$$\phi = -\frac{1}{2} + 10 n$$
, n an integer $\phi = \dots -10.5, -0.5, 9.5, 19.5, \dots$

• The principle phase shift is $\phi = 9.5$

Solution (cont): The sine model is

Vertical Shift and Amplitude
Frequency and Period
Phase Shift
Examples
Phase Shift of Half a Period
Equivalent Sine and Cosine Models
Return to Annual Temperature Variation
Other Examples

Population Model with Phase Shift

Solution (cont): The cosine model has the form

$$y(t) = 20 + 6 \cos\left(\frac{\pi}{5}(t - \phi_2)\right),\,$$

Solution (cont): The cosine model has the form

$$y(t) = 20 + 6 \cos\left(\frac{\pi}{5}(t - \phi_2)\right),\,$$

• The vertical shift, amplitude, and frequency match the sine model

Solution (cont): The cosine model has the form

$$y(t) = 20 + 6 \cos\left(\frac{\pi}{5}(t - \phi_2)\right),\,$$

- The vertical shift, amplitude, and frequency match the sine model
- The maximum of the cosine function occurs when its argument is zero, so

$$\begin{array}{rcl} \frac{\pi}{5}(2-\phi_2) & = & 0, \\ \phi_2 & = & 2. \end{array}$$

Solution (cont): The cosine model has the form

$$y(t) = 20 + 6 \cos\left(\frac{\pi}{5}(t - \phi_2)\right),\,$$

- The vertical shift, amplitude, and frequency match the sine model
- The maximum of the cosine function occurs when its argument is zero, so

$$\begin{array}{rcl} \frac{\pi}{5}(2-\phi_2) & = & 0, \\ \phi_2 & = & 2. \end{array}$$

• The cosine model satisfies

$$y(t) = 20 + 6\cos\left(\frac{\pi}{5}(t-2)\right)$$

<ロ>

Vertical Shift and Amplitude
Frequency and Period
Phase Shift
Examples
Phase Shift of Half a Period
Equivalent Sine and Cosine Models
Return to Annual Temperature Variation
Other Examples

Body Temperature

Vertical Shift and Amplitude
Frequency and Period
Phase Shift
Examples
Phase Shift of Half a Period
Equivalent Sine and Cosine Models
Return to Annual Temperature Variation
Other Examples

Body Temperature

Circadian Rhythms:

 Humans, like many organisms, undergo circadian rhythms for many of their bodily functions

Body Temperature

- Humans, like many organisms, undergo circadian rhythms for many of their bodily functions
- Circadian rhythms are the daily fluctuations that are driven by the light/dark cycle of the Earth

- Humans, like many organisms, undergo circadian rhythms for many of their bodily functions
- Circadian rhythms are the daily fluctuations that are driven by the light/dark cycle of the Earth
- Seems to affect the pineal gland in the head

- Humans, like many organisms, undergo circadian rhythms for many of their bodily functions
- Circadian rhythms are the daily fluctuations that are driven by the light/dark cycle of the Earth
- Seems to affect the pineal gland in the head
- This temperature normally varies a few tenths of a degree in each individual with distinct regularity

Circadian Rhythms:

- Humans, like many organisms, undergo circadian rhythms for many of their bodily functions
- Circadian rhythms are the daily fluctuations that are driven by the light/dark cycle of the Earth
- Seems to affect the pineal gland in the head
- This temperature normally varies a few tenths of a degree in each individual with distinct regularity
- The body is usually at its hottest around 10 or 11 AM and at its coolest in the late evening, which helps encourage sleep

Body Temperature Model: Suppose that measurements on a particular individual show

- A high body temperature of 37.1°C at 10 am
- A low body temperature of 36.7°C at 10 pm

Body Temperature Model: Suppose that measurements on a particular individual show

- A high body temperature of 37.1°C at 10 am
- A low body temperature of 36.7°C at 10 pm

Assume body temperature T and a model of the form

$$T(t) = A + B \cos(\omega(t - \phi))$$

Body Temperature Model: Suppose that measurements on a particular individual show

- A high body temperature of 37.1°C at 10 am
- A low body temperature of 36.7°C at 10 pm

Assume body temperature T and a model of the form

$$T(t) = A + B \cos(\omega(t - \phi))$$

• Find the constants $A,\,B,\,\omega,$ and ϕ with $B>0,\,\omega>0,$ and $\phi\in[0,24)$

Body Temperature Model: Suppose that measurements on a particular individual show

- A high body temperature of 37.1°C at 10 am
- A low body temperature of 36.7°C at 10 pm

Assume body temperature T and a model of the form

$$T(t) = A + B \cos(\omega(t - \phi))$$

- Find the constants $A,\,B,\,\omega,$ and ϕ with $B>0,\,\omega>0,$ and $\phi\in[0,24)$
- Graph the model

Body Temperature Model: Suppose that measurements on a particular individual show

- A high body temperature of 37.1°C at 10 am
- A low body temperature of 36.7°C at 10 pm

Assume body temperature T and a model of the form

$$T(t) = A + B \cos(\omega(t - \phi))$$

- Find the constants $A,\,B,\,\omega,$ and ϕ with $B>0,\,\omega>0,$ and $\phi\in[0,24)$
- Graph the model
- Find the equivalent sine model

Vertical Shift and Amplitude
Frequency and Period
Phase Shift
Examples
Phase Shift of Half a Period
Equivalent Sine and Cosine Models
Return to Annual Temperature Variation
Other Examples

Body Temperature

Solution: Compute the various parameters

Solution: Compute the various parameters

• The vertical shift satisfies

$$A = \frac{37.1 + 36.7}{2} = 36.9$$

Solution: Compute the various parameters

• The vertical shift satisfies

$$A = \frac{37.1 + 36.7}{2} = 36.9$$

• The amplitude satisfies

$$B = 37.1 - 36.9 = 0.2$$

Solution: Compute the various parameters

• The vertical shift satisfies

$$A = \frac{37.1 + 36.7}{2} = 36.9$$

• The **amplitude** satisfies

$$B = 37.1 - 36.9 = 0.2$$

• Since the **period** is P = 24 hours, the **frequency**, ω , satisfies

$$\omega = \frac{2\pi}{24} = \frac{\pi}{12}$$

Vertical Shift and Amplitude
Frequency and Period
Phase Shift
Examples
Phase Shift of Half a Period
Equivalent Sine and Cosine Models
Return to Annual Temperature Variation
Other Examples

Body Temperature

Solution (cont): Compute the phase shift

Solution (cont): Compute the phase shift

• The maximum of 37.1°C occur at t = 10 am

Solution (cont): Compute the phase shift

- The maximum of 37.1° C occur at t = 10 am
- The cosine function has its maximum when its argument is 0 (or any integer multiple of 2π)

Solution (cont): Compute the phase shift

- The maximum of 37.1°C occur at t = 10 am
- The cosine function has its maximum when its argument is 0 (or any integer multiple of 2π)
- The appropriate phase shift solves

$$\omega(10 - \phi) = 0 \qquad \text{or} \qquad \phi = 10$$

Solution (cont): The cosine model is

$$T(t) = 36.9 + 0.2 \cos\left(\frac{\pi}{12}(t - 10)\right)$$

Vertical Shift and Amplitude
Frequency and Period
Phase Shift
Examples
Phase Shift of Half a Period
Equivalent Sine and Cosine Models
Return to Annual Temperature Variation
Other Examples

Body Temperature

U

Solution (cont): The sine model for body temperature is

$$T(t) = 36.9 + 0.2 \sin\left(\frac{\pi}{12}(t - \phi_2)\right)$$

Solution (cont): The sine model for body temperature is

$$T(t) = 36.9 + 0.2 \sin\left(\frac{\pi}{12}(t - \phi_2)\right)$$

• The vertical shift, amplitude, and frequency match the cosine model

U

Solution (cont): The sine model for body temperature is

$$T(t) = 36.9 + 0.2 \sin\left(\frac{\pi}{12}(t - \phi_2)\right)$$

- The vertical shift, amplitude, and frequency match the cosine model
- From our formula above

$$\phi_2 = 10 - \frac{\pi}{2\omega} = 10 - 6 = 4$$

U

Solution (cont): The sine model for body temperature is

$$T(t) = 36.9 + 0.2 \sin\left(\frac{\pi}{12}(t - \phi_2)\right)$$

- The vertical shift, amplitude, and frequency match the cosine model
- From our formula above

$$\phi_2 = 10 - \frac{\pi}{2\omega} = 10 - 6 = 4$$

• The sine model satisfies

$$T(t) = 36.9 + 0.2 \sin\left(\frac{\pi}{12}(t-4)\right)$$

