Calculus for the Life Sciences II
 Lecture Notes－Trigonometric Functions

Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉

Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego，CA 92182－7720
http：／／www－rohan．sdsu．edu／～jmahaffy

Fall 2012
SDSO
Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉（1／67）

Introduction－Trigonometric Functions

Introduction－Trigonometric Functions

－Many phenomena in biology appear in cycles
－Natural physical cycles
－Daily cycle of light
－Annual cycle of the seasons
－Oscillations are often modeled using trigonometric functions

Outline

8
Introduction
Annual Temperature Cycles
－San Diego and Chicago
（3）Trigonometric Functions
－Basic Trig Functions
－Radian Measure
－Sine and Cosine
－Properties of Sine and Cosine
－Identities
Trigonometric Models
－Vertical Shift and Amplitude
－Frequency and Period
－Phase Shift
－Examples
－Phase Shift of Half a Period
－Equivalent Sine and Cosine Models
－Return to Annual Temperature Variation
－Other Examples

Annual Temperature Cycles

－Weather reports give the average temperature for a day
－Long term averages help researchers predict effects of global warming over the background noise of annual variation
－There are seasonal differences in the average daily temperature
－Higher averages in the summer
－Lower averages in the winter

Modeling Annual Temperature Cycles

Modeling Annual Temperature Cycles

－What mathematical tools can help predict the annual temperature cycles？
－Polynomials and exponentials do not exhibit the periodic behavior
－Trigonometric functions exhibit periodicity

Average Temperatures for San Diego and Chicago：
Table of the monthly average high and low temperatures for San Diego and Chicago

Month	Jan	Feb	Mar	Apr	May	Jun
San Diego	$66 / 49$	$67 / 51$	$66 / 53$	$68 / 56$	$69 / 59$	$72 / 62$
Chicago	$29 / 13$	$34 / 17$	$46 / 29$	$59 / 39$	$70 / 48$	$80 / 58$
Month	Jul	Aug	Sep	Oct	Nov	Dec
San Diego	$76 / 66$	$78 / 68$	$77 / 66$	$75 / 61$	$70 / 54$	$66 / 49$
Chicago	$84 / 63$	$82 / 62$	$75 / 54$	$63 / 42$	$48 / 32$	$34 / 19$
5050						

Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉（6／67）

Antroduction
Trigonometric Functions
Trigonometric Models
San Diego and Chicago

Average Temperatures for San Diego and Chicago

Models of Annual Temperature Cycles for San Diego and Chicago
－The two graphs have similarities and differences
－Same seasonal period as expected
－Seasonal variation or amplitude of oscillation for Chicago is much greater than San Diego
－Overall average temperature for San Diego is greater than the average for Chicago
－Overlying models use cosine functions

Trigonometric Functions

Trigonometric Functions are often called circular functions
－Let (x, y) be a point on a circle of radius r centered at the origin
－Define the angle θ between the ray connecting the point to the origin and the x－axis

Annual Temperature Cycles Trigonometric Functions Trigonometric Models

Trigonometric Functions

Trig Functions－ 6 basic Trigonometric functions

$$
\begin{array}{lll}
\sin (\theta)=\frac{y}{r} & \cos (\theta)=\frac{x}{r} & \tan (\theta)=\frac{y}{x} \\
\csc (\theta)=\frac{r}{y} & \sec (\theta)=\frac{r}{x} & \cot (\theta)=\frac{x}{y}
\end{array}
$$

We will concentrate almost exclusively on the sine and cosine

Joseph M．Mahafty，〈mahafyyenath．sdsu．edu〉（10／67）

Basic Trig Functions
Radian Measure
Sine and Cosine
Properties of Sine and Cosine
Identities

Radian Measure

Radian Measure

－Most trigonometry starts using degrees to measure an angle
－This is not the appropriate unit to use in Calculus
－The radian measure of the angle uses the unit circle
－The distance around the perimeter of the unit circle is 2π
－The radian measure of the angle θ is simply the distance along the circumference of the unit circle
－A 45° angle is $\frac{1}{8}$ the distance around the unit circle or $\frac{\pi}{4}$ radians
－ 90° and 180° angles convert to $\frac{\pi}{2}$ and π radians
－Conversions

$$
1^{\circ}=\frac{\pi}{180}=0.01745 \text { radians or } 1 \text { radian }=\frac{180^{\circ}}{\pi}=57.296^{\circ} \quad \text { SDSO }
$$

Introduction
Annual Temperature Cycles Trigonometric Functions

Sine and Cosine
Properties of Sine and Cosine
Identities

Sine and Cosine

Sine and Cosine：The unit circle has $r=1$ ，so the trig functions sine and cosine satisfy

$$
\cos (\theta)=x \quad \text { and } \quad \sin (\theta)=y
$$

－The formula for cosine（cos）gives the x value of the angle， θ ，（measured in radians）
－The formula for sine (\sin) gives the y value of the angle，θ
－The tangent function（ \tan ）gives the slope of the line (y / x)

Graph of $\sin (\theta)$ and $\cos (\theta)$ for angles $\theta \in[-2 \pi, 2 \pi]$

Sine and Cosine

Sine－Maximum and Minimum

－The sine function has its maximum value at $\frac{\pi}{2}$ with $\sin (\pi / 2)=1$
－By periodicity， $\sin (x)=1$ for $x=\frac{\pi}{2}+2 n \pi$ for any integer n
－The sine function has its minimum value at $\frac{3 \pi}{2}$ with $\sin (3 \pi / 2)=-1$
－By periodicity， $\sin (x)=-1$ for $x=\frac{3 \pi}{2}+2 n \pi$ for any integer n

Annual Temperatroduction Trigonometric Functions Trigonometric Models

Basic Trig Functions Sine and Cosine Properties of Sine and Cosine Identities

Sine and Cosine－Periodicity and Bounded

－Notice the 2π periodicity or the functions repeat the same pattern every 2π radians
－This is clear from the circle because every time you go 2π radians around the circle，you return to the same point
－Note that both the sine and cosine functions are bounded between -1 and 1

Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉（14／67）

Introduction
Annual Temperature Cycles Trigonometric Functions
Trigonometric Models

Sine and Cosine

Cosine－Maximum and Minimum

－The cosine function has its maximum value at 0 with $\cos (0)=1$
－By periodicity， $\cos (x)=1$ for $x=2 n \pi$ for any integer n
－The cosine function has its minimum value at π with $\cos (\pi)=-1$
－By periodicity， $\cos (x)=-1$ for $x=(2 n+1) \pi$ for any integer n

Annual Temperature Cycles Trigonometric Functions Trigonometric Models

Table of Some Important Values of Trig Functions

x	$\sin (x)$	$\cos (x)$
0	0	1
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
$\frac{\pi}{2}$	1	0
π	0	-1
$\frac{3 \pi}{2}$	-1	0
2π	0	1

Radian Measure
Properties of Sine and Cosin Identities

Properties of Cosine

－Periodic with period 2π
－Cosine is an even function
－Cosine is bounded by -1 and 1
－Maximum at $x=0, \cos (0)=1$
－By periodicity，other maxima at $x_{n}=2 n \pi$ with $\cos (2 n \pi)=1(n$ any integer）
－Minimum at $x=\pi, \cos (\pi)=-1$
－By periodicity，other minima at $x_{n}=(2 n+1) \pi$ with $\cos \left(x_{n}\right)=-1$（ n any integer）
－Zeroes of cosine separated by π with $\cos \left(x_{n}\right)=0$ when $x_{n}=\frac{\pi}{2}+n \pi(n$ any integer $)$

Properties of Sine and Cosine

Properties of Sine

－Periodic with period 2π
－Sine is an odd function
－Sine is bounded by -1 and 1
－Maximum at $x=\frac{\pi}{2}, \sin \left(\frac{\pi}{2}\right)=1$
－By periodicity，other maxima at $x_{n}=\frac{\pi}{2}+2 n \pi$ with $\sin \left(x_{n}\right)=1$（ n any integer）
－Minimum at $x=\frac{3 \pi}{2}, \sin \left(\frac{3 \pi}{2}\right)=-1$
－By periodicity，other minima at $x_{n}=\frac{3 \pi}{2}+2 n \pi$ with $\sin \left(x_{n}\right)=-1(n$ any integer $)$
－Zeroes of sine separated by π with $\sin \left(x_{n}\right)=0$ when $x_{n}=n \pi$（ n any integer）

Some Identities for Cosine and Sine
－ $\cos ^{2}(x)+\sin ^{2}(x)=1$ for all values of x
－Adding and Subtracting angles for cosine

$$
\begin{aligned}
& \cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y) \\
& \cos (x-y)=\cos (x) \cos (y)+\sin (x) \sin (y)
\end{aligned}
$$

－Adding and Subtracting angles for sine

$$
\begin{aligned}
& \sin (x+y)=\sin (x) \cos (y)+\cos (x) \sin (y) \\
& \sin (x-y)=\sin (x) \cos (y)-\cos (x) \sin (y)
\end{aligned}
$$

Example of Shifts

Example of Shifts for Sine and Cosine：
Use the trigonometric identities to show
－ $\cos (x)=\sin \left(x+\frac{\pi}{2}\right)$
－ $\sin (x)=\cos \left(x-\frac{\pi}{2}\right)$
The first example shows the cosine is the same as the sine function shifted to the left by $\frac{\pi}{2}$

The second example shows the sine is the same as the cosine function shifted to the right by $\frac{\pi}{2}$

Example of Shifts

Solution（cont）：Similarly from the additive identity for cosine

$$
\cos \left(x-\frac{\pi}{2}\right)=\cos (x) \cos \left(\frac{\pi}{2}\right)+\sin (x) \sin \left(\frac{\pi}{2}\right)
$$

Again $\cos \left(\frac{\pi}{2}\right)=0$ and $\sin \left(\frac{\pi}{2}\right)=1$ ，so

$$
\cos \left(x-\frac{\pi}{2}\right)=\sin (x)
$$

Solution：We begin by using the additive identity for sine

$$
\sin \left(x+\frac{\pi}{2}\right)=\sin (x) \cos \left(\frac{\pi}{2}\right)+\cos (x) \sin \left(\frac{\pi}{2}\right)
$$

Since $\cos \left(\frac{\pi}{2}\right)=0$ and $\sin \left(\frac{\pi}{2}\right)=1$ ，

$$
\sin \left(x+\frac{\pi}{2}\right)=\cos (x)
$$

Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉
 （22／67）

Vertical Shift and Amplitude Frequency and Period
Introduction
Annual Temperature Cycles
rigonometric Functions
Trigonometric Models
Pxamples
Equivalent Sine and Cosine Models
Return to Annual Temperature Variation Other Examples

Trigonometric Models

Trigonometric Models are appropriate when data follows a simple oscillatory behavior
The Cosine Model

$$
y(t)=A+B \cos (\omega(t-\phi))
$$

The Sine Model

$$
y(t)=A+B \sin (\omega(t-\phi))
$$

Each model has Four Parameters

Vertical Shift and Amplitude

Vertical Shift and Amplitude

Trigonometric Model Parameters：For the cosine model

$$
y(t)=A+B \cos (\omega(t-\phi))
$$

－The model parameter A is the vertical shift，which is associated with the average height of the model
－The model parameter B gives the amplitude，which measures the distance from the average，A ，to the maximum（or minimum）of the model

There are similar parameters for the sine model

Examples
Phase Shift of Half a Period
Equivalent Sine and Cosine Models Return to Annual Temperature Variation
Other Examples Other Examples

Phase Shift

Trigonometric Model Parameters：For the cosine model

$$
y(t)=A+B \cos (\omega(t-\phi))
$$

－The model parameter ϕ is the phase shift，which shifts our models to the left or right
－This gives a horizontal shift of ϕ units
－If the period is denoted $T=\frac{2 \pi}{\omega}$ ，then the principle phase shift satisfies $\phi \in[0, T)$
－By periodicity of the model，if ϕ is any phase shift

$$
\phi_{1}=\phi+n T=\phi+\frac{2 n \pi}{\omega}, \quad n \text { an integer }
$$

is a phase shift for an equivalent model
There is a similar parameter for the sine model

Frequency and Period

Trigonometric Model Parameters：For the cosine model

$$
y(t)=A+B \cos (\omega(t-\phi))
$$

－The model parameter ω is the frequency，which gives the number of periods of the model that occur as t varies over 2π radians
－The period is given by $T=\frac{2 \pi}{\omega}$
There are similar parameters for the sine model

Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉
（26／67）

Introduction
Annual Temperature Cycios Trigonometric Functions Trigonometric Models

Vertical Shift and Amplitude Frequency a
Annual Temperature Cycles
Pxamples
Phamples
Equivalent Sine and Cosine Models
Return to Annual Temperature Variation Other Examples

Model Parameters

Trigonometric Model Parameters：For the cosine and sine models

$$
y(t)=A+B \cos (\omega(t-\phi))
$$

and

$$
y(t)=A+B \sin (\omega(t-\phi))
$$

－The vertical shift parameter A is unique
－The amplitude parameter B is unique in magnitude but the sign can be chosen by the modeler
－The frequency parameter ω is unique in magnitude but the sign can be chosen by the modeler
－By periodicity，phase shift has infinitely many choices
－One often selects the unique principle phase shift satisfying $0 \leq \phi<T$

Vertical Shift and Am
Frequency and Period
Phase Shift
Examples
Phase Shift of Half a Period
Equivalent Sine and Cosine Models
Return to Annual Temperature Variation

Annual Temperature Trigonometric Functions Trigonometric Models

Vertical Shift and Amp
Frequency and Period
Phase Shift
Examples
Phase Shift of Half a Period
Equivalent Sine and Cosine Models
Return to Annual Temperature Variation Other Examples

Example：Period and Amplitude

Solution：For

$$
y(x)=4 \sin (2 x)
$$

－The amplitude is 4 ，so solution oscillates between -4 and 4
－The frequency is 2
－To find the period，let $x=T$
－The argument of sine is $2 x$ ，and the period of the sine function is 2π
－The period，T ，satisfies

$$
2 T=2 \pi \quad \text { so } \quad T=\pi
$$

－Alternately，

$$
T=\frac{2 \pi}{\omega}=\frac{2 \pi}{2}=\pi
$$

Joseph M．Mahaffy，〈mahaffyemath．sdsu．edu〉（30／67）

	Vertical Shift and Amplitude y and Period Phase Shift Examples Phase Shift of Half a Period Equivalent Sine and Cosine Models Other Examples

Example：Period and Amplitude

Graph for

Vertical Shift and Am
Frequency and Period
Phase Shift
Examples
Phase Shift of Half a Period
Equivalent Sine and Cosine Models

Example：Sine Function

Example 2：Consider the model

$$
y(x)=3 \sin (2 x)-2
$$

skip Example

－Find the vertical shift，amplitude，and period
－Determine all maxima and minima for $x \in[-2 \pi, 2 \pi]$
－Sketch a graph

Example：Sine Function

Solution：For

$$
y(x)=3 \sin (2 x)-2
$$

－The vertical shift is -2
－The amplitude is 3 ，so solution oscillates between -5 and 1
－The frequency is 2
－The period，T ，satisfies

$$
T=\frac{2 \pi}{\omega}=\frac{2 \pi}{2}=\pi
$$

Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉（34／67）

	Vertical Shift and Amplitude Introduction
Annual Temperature Cycles	Frequency and Period Phase Shift
Examples	

Example：Sine Function

```
Vertical Shift and Amplitude Frequency and Period
Phase Shift Examples
Phase Shift of Half a Period
Equivalent Sine and Cosine Models Return to Annual Temperature Variation Other Examples
```

Solution（cont）：For

$$
y(x)=3 \sin (2 x)-2
$$

－The model achieves a maximum of 1 when the argument $2 x=\frac{\pi}{2}$ or $x=\frac{\pi}{4}$
－The model achieves a minimum of -5 when the argument $2 x=\frac{3 \pi}{2}$ or $x=\frac{3 \pi}{4}$
－By periodicity，other maxima at $x=\pi+\frac{\pi}{4}=\frac{5 \pi}{4}$ ， $x=-\pi+\frac{\pi}{4}=-\frac{3 \pi}{4}$ ，and $x=-\frac{9 \pi}{4}$
－Similarly，there are other minima at $x=-\frac{5 \pi}{4},-\frac{\pi}{4}$ ，and $\frac{7 \pi}{4}$

Example：Sine Function

To graph a sine or cosine model，divide the period into 4 even parts
For this example，take $x=0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3 \pi}{4}, \pi$

$$
\begin{aligned}
y(0) & =3 \sin (2(0))-2=3 \sin (0)-2=-2, \\
y(\pi / 4) & =3 \sin (2(\pi / 4))-2=3 \sin (\pi / 2)-2=1, \\
y(\pi / 2) & =3 \sin (2(\pi / 2))-2=3 \sin (\pi)-2=-2, \\
y(3 \pi / 4) & =3 \sin (2(3 \pi / 4))-2=3 \sin (3 \pi / 2)-2=-5, \\
y(\pi) & =3 \sin (2(\pi))-2=3 \sin (2 \pi)-2=-2 .
\end{aligned}
$$

Vertical Shift and Am
Frequency and Period
Phase Shift
Examples
Phase Shift of Half a Period
Equivalent Sine and Cosine Models Return to Annual Temperature Variation
Other Examples Other Examples

Example：Sine Function

Example 3：Consider the model

$$
y(x)=3-2 \cos (3 x)
$$

Skip Example

－Find the vertical shift，amplitude，and period
－Determine all maxima and minima for $x \in[0,2 \pi]$
－Sketch a graph
（37／67）

$$
\begin{aligned}
& \text { Vertical Shift and Amplitude } \\
& \text { Frequency and Period } \\
& \text { Phase Shift } \\
& \text { Examples } \\
& \text { Phase Shift of Half a Period } \\
& \text { Equivalent Sine and Cosine Models } \\
& \text { Return to Annual Temperature Variation } \\
& \text { Other Examples }
\end{aligned}
$$

Example：Vertical Shift with Cosine Function

Solution：For

$$
y(x)=3-2 \cos (3 x)
$$

－The vertical shift is 3
－The amplitude is 2 （noting that there is a negative sign）， so solution oscillates between 1 and 5
－The frequency is 3
－The period，T ，satisfies

$$
T=\frac{2 \pi}{\omega}=\frac{2 \pi}{3}
$$

$$
y(x)=3-2 \cos (3 x)
$$

－The model achieves a minimum of 1 when the argument $3 x=0$ or $x=0$
－The model achieves a maximum of 5 when the argument $3 x=\pi$ or $x=\frac{\pi}{3}$
－By periodicity，the minima in the domain are $x=0, \frac{2 \pi}{3}, \frac{4 \pi}{3}$ ， and 2π
－By periodicity，the maxima in the domain are $x=\frac{\pi}{3}, \pi$ ， and $\frac{5 \pi}{3}$
－Note that this is an even function

Vertical Shift and Amp
Frequency and Period
Phase Shif
Examples
Phase Shift of Half a Period
Equivalent Sine and Cosine Models Equivaient Sine and Cosine Models
Return to Annual Temperature Variation
Other Examples

Example：Vertical Shift with Cosine Function

Graph for

Phase Shift in Models

Phase Shift of Half a Period

A phase shift of half a period creates an equivalent sine or cosine model with the sign of the amplitude reversed

Models Matching Data

－Phase shifts are important matching data in periodic models
－The cosine model is easiest to match，since the maximum of the cosine function occurs when the argument is zero

By inserting a phase shift of half a period，the constant for the amplitude becomes positive

$$
y(x)=3+2 \cos \left(3\left(x-\frac{\pi}{3}\right)\right)
$$

Show this by employing the angle subtraction identity for the cosine function

$$
\begin{aligned}
y(x) & =3+2 \cos \left(3\left(x-\frac{\pi}{3}\right)\right) \\
& =3+2 \cos (3 x-\pi) \\
& =3+2(\cos (3 x) \cos (\pi)+\sin (3 x) \sin (\pi)) \\
& =3-2 \cos (3 x)
\end{aligned}
$$

since $\cos (\pi)=-1$ and $\sin (\pi)=0$

Introduction Annual Temperature Cycles Trigonometric Functions Trigonometric Models	Vertical Shift and Amplitude Frequency and Period Phase Shift Examples Phase Shift of Half a Period Equivalent Sine and Cosine Models Return to Annual Temperature Variation Other Examples
Example：Cosine Model w	Phase Shift

Example 3：Consider the model

$$
y(x)=4+6 \cos \left(\frac{1}{2}(x-\pi)\right), \quad x \in[-4 \pi, 4 \pi]
$$

Skip Example

－Find the vertical shift，amplitude，period，and phase shift
－Determine all maxima and minima for $x \in[0,2 \pi]$
－Sketch a graph
－Find the equivalent sine model

Example: Cosine Model with Phase Shift

Solution: Rewrite the model

$$
y(x)=4+6 \cos \left(\frac{1}{2}(x-\pi)\right)
$$

The vertical shift is $A=4$

- The amplitude is $B=6$, so $y(x)$ oscillates between -2 and 10
- The frequency is $\omega=\frac{1}{2}$
- The period, T, satisfies

$$
T=\frac{2 \pi}{\omega}=4 \pi
$$

- The phase shift is $\phi=\pi$, which means the cosine model is shifted horizontally $x=\pi$ units to the right
- Since cosine has a maximum with argument zero, a maximum will occur at $x=\pi$

5050

Phase Shift of Half a Period Equivalent Sine and Cosine Models Return to Annual Temperature Variation Other Examples

Example: Cosine Model with Phase Shift

Graph for

x (radians)
5050

Example: Cosine Model with Phase Shift

Solution (cont): For graphing,

$$
y(x)=4+6 \cos \left(\frac{1}{2}(x-\pi)\right)
$$

The significant points are $x=\pi, 2 \pi, 3 \pi, 4 \pi$, and 5π

$$
\begin{aligned}
y(\pi)=4+6 \cos \left(\frac{1}{2}(\pi-\pi)\right)=4+6 \cos (0)=4+6(1)=10, \\
y(2 \pi)=4+6 \cos \left(\frac{1}{2}(2 \pi-\pi)\right)=4+6 \cos \left(\frac{\pi}{2}\right)=4+6(0)=4, \\
y(3 \pi)=4+6 \cos \left(\frac{1}{2}(2 \pi-\pi)\right)=4+6 \cos (\pi)=4+6(-1)=-2, \\
y(4 \pi)=4+6 \cos \left(\frac{1}{2}(2 \pi-\pi)\right)=4+6 \cos \left(\frac{3 \pi}{2}\right)=4+6(0)=4, \\
y(5 \pi)=4+6 \cos \left(\frac{1}{2}(2 \pi-\pi)\right)=4+6 \cos (2 \pi)=4+6(1)=10 .
\end{aligned}
$$

Solution (cont): The appropriate sine model has the same vertical shift, A, amplitude, B, and frequency, ω,

$$
y(x)=4+6 \sin \left(\frac{1}{2}(x-\phi)\right)
$$

Must find appropriate phase shift, ϕ
Recall the cosine function is horizontally shifted to the left of the sine function by $\frac{\pi}{2}$

$$
\cos \left(\frac{1}{2}(x-\pi)\right)=\sin \left(\frac{1}{2}(x-\pi)+\frac{\pi}{2}\right)=\sin \left(\frac{1}{2}(x-\phi)\right)
$$

It follows that we want

$$
-\frac{\pi}{2}+\frac{\pi}{2}=-\frac{\phi}{2} \quad \text { or } \quad \phi=0
$$

Example：Cosine Model with Phase Shift

Solution（cont）：The equivalent sine model is

$$
y(x)=4+6 \sin \left(\frac{x}{2}\right)
$$

Thus，the original phase－shifted cosine model

$$
y(x)=4+6 \cos \left(\frac{1}{2}(x-\pi)\right)
$$

is the same as an unshifted sine model

5050
Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉
（49／67）
Vertical Shift and Amplitude Frequency and Period
Phase Shif
Annual Temperature Cycles Trigonometric Functions Trigonometric Models

Phamples Shift of Half a Period
Equivalent Sine and Cosine Models Return to Annual Temperature Variation Other Examples

Return to Annual Temperature Model

Annual Temperature Model：Started section with data and graphs of average monthly temperatures for Chicago and San Diego
－Fit data to cosine model for temperature，T ，

$$
T(m)=A+B \cos (\omega(m-\phi))
$$

where m is in months
－Find best model parameters，A, B, ω ，and ϕ
－The frequency，ω ，is constrained by a period of 12 months
－It follows that

$$
12 \omega=2 \pi \quad \text { or } \quad \omega=\frac{\pi}{6}=0.5236
$$

Introduction
 Annual Temperature Cycles Trigonometric Functions Trigonometric Models
 Equivalent Sine and Cosine Models

Phase Shift for Equivalent Sine and Cosine Models
Suppose that the sine and cosine models are equivalent，so

$$
\sin \left(\omega\left(x-\phi_{1}\right)\right)=\cos \left(\omega\left(x-\phi_{2}\right)\right) .
$$

The relationship between the phase shifts，ϕ_{1} and ϕ_{2} satisfies：

$$
\phi_{1}=\phi_{2}-\frac{\pi}{2 \omega} .
$$

Note：Remember that the phase shift is not unique
It can vary by integer multiples of the period，$T=\frac{2 \pi}{\omega}$
Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉（50／67）

Introduction Annual Temperature Cycles Trigonometric Functions Trigonometric Models	Vertical Shift and Amplitude Frequency and Period Phase Shift Examples Phase Shift of Half a Period Equivalent Sine and Cosine Models Return to Annual Temperature Variation Other Examples	
Return to Annual Temper	re Model	2

Annual Temperature Model：

$$
T(m)=A+B \cos (\omega(m-\phi))
$$

－Choose A to be the average annual temperature
－Average for San Diego is $A=64.29$
－Average for Chicago is $A=49.17$
－Perform least squares best fit to data for B and ϕ
－For San Diego，obtain $B=7.29$ and $\phi=6.74$
－For Chicago，obtain $B=25.51$ and $\phi=6.15$

Annual Temperature Model for San Diego：

$$
T(m)=64.29+7.29 \cos (0.5236(m-6.74))
$$

Annual Temperature Model for Chicago：

$$
T(m)=49.17+25.51 \cos (0.5236(m-6.15))
$$

－The amplitude of models
－Temperature in San Diego only varies $\pm 7.29^{\circ} \mathrm{F}$ ，giving it a ＂Mediterranean＂climate
－Temperature in Chicago varies $\pm 25.51^{\circ} \mathrm{F}$ ，indicating cold winters and hot summers

Vertical Shift and Amplitude
Frequency and Period
Phase Shift
Examples
Phase Shift of Half a Period
Equivalent Sine and Cosine Models
Return to Annual Temperature Variation Other Examples
Return to Annual Temperature Model
Convert Cosine Model to Sine Model：

$$
T(m)=A+B \sin \left(\omega\left(m-\phi_{2}\right)\right)
$$

－Formula shows

$$
\phi_{2}=\phi-\frac{\pi}{2 \omega}
$$

where ϕ is from the cosine model
－For San Diego，$\phi_{2}=3.74$
－For Chicago，$\phi_{2}=3.15$
－Sine Model for San Diego：

$$
T(m)=64.29+7.29 \sin (0.5236(m-3.74))
$$

－Sine Model for Chicago：

$$
T(m)=49.17+25.51 \sin (0.5236(m-3.15))
$$

Vertical Shift and Amplitude
Frequency and Period
Phase Shift
Examples
Phase Shift of Half a Period
Equivalent Sine and Cosine Models

Return to Annual Temperature Model
Annual Temperature Model for San Diego：

$$
T(m)=64.29+7.29 \cos (0.5236(m-6.74))
$$

Annual Temperature Model for Chicago：

$$
T(m)=49.17+25.51 \cos (0.5236(m-6.15))
$$

－The phase shift for the models
－For San Diego，the phase shift of $\phi=6.74$ ，so the maximum temperature occurs at 6.74 months（late July）
－For Chicago，the phase shift of $\phi=6.15$ ，so the maximum temperature occurs at 6.15 months（early July）

Population Model：Suppose population data show a 10 year periodic behavior with a maximum population of 26 （thousand） at $t=2$ and a minimum population of 14 （thousand）at $t=7$
Assume a model of the form

$$
y(t)=A+B \sin (\omega(t-\phi))
$$

Skip Example
－Find the constants A, B, ω ，and ϕ with $B>0, \omega>0$ ，and $\phi \in[0,10)$
－Since ϕ is not unique，find values of ϕ with $\phi \in[-10,0)$ and $\phi \in[10,20)$
－Sketch a graph
－Find the equivalent cosine model
Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉（56／67）

Population Model with Phase Shift

Solution：Compute the various parameters
－The vertical shift satisfies

$$
A=\frac{26+14}{2}=20
$$

－The amplitude satisfies

$$
B=26-20=6
$$

－Since the period is $T=10$ years，the frequency，ω ， satisfies

$$
\omega=\frac{2 \pi}{10}=\frac{\pi}{5}
$$

Examples
Phase Shift of Half a Period Equivalent Sine and Cosine Models Return to Annual Temperature Variation Other Examples

Population Model with Phase Shift

Solution（cont）：Continuing，the phase shift was

$$
\phi=-\frac{1}{2}
$$

－This value of ϕ is not in the interval $[0,10)$
－The periodicity，$T=10$ ，of the model is also reflected in the phase shift，ϕ
$-$

$$
\begin{aligned}
& \phi=-\frac{1}{2}+10 n, \quad n \text { an integer } \\
& \phi=\ldots-10.5,-0.5,9.5,19.5, \ldots
\end{aligned}
$$

－The principle phase shift is $\phi=9.5$

Annual Tem Introduction Trigonometric Functions Trigonometric Models

Vertical Shift and Am
Frequency and Period
Phase Shift
Examples
Phase Shift of Half a Period
Equivalent Sine and Cosine Models Return to Annual Temperature Variation Other Examples

Population Model with Phase Shift

Solution（cont）：Compute the phase shift

－The maximum of 26 occurs at $t=2$ ，so the model satisfies：

$$
y(2)=26=20+6 \sin \left(\frac{\pi}{5}(2-\phi)\right)
$$

－Clearly

$$
\sin \left(\frac{\pi}{5}(2-\phi)\right)=1
$$

－The sine function is at its maximum when its argument is $\frac{\pi}{2}$ ，so

$$
\begin{aligned}
\frac{\pi}{5}(2-\phi) & =\frac{\pi}{2} \\
2-\phi & =\frac{5}{2} \\
\phi & =-\frac{1}{2}
\end{aligned}
$$

Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉（58／67）

Population Model with Phase Shift
Solution（cont）：The sine model is

Annual Temperature Cyction

Vertical Shift and Am
Frequency and Period
Phase Shift
Examples
Phase Shift of Half a Period Equivalent Sine and Cosine Models Return to Annual Temperature Variation
Other Examples

Population Model with Phase Shift

Solution（cont）：The cosine model has the form

$$
y(t)=20+6 \cos \left(\frac{\pi}{5}\left(t-\phi_{2}\right)\right),
$$

－The vertical shift，amplitude，and frequency match the sine model
－The maximum of the cosine function occurs when its argument is zero，so

$$
\begin{aligned}
\frac{\pi}{5}\left(2-\phi_{2}\right) & =0 \\
\phi_{2} & =2 .
\end{aligned}
$$

－The cosine model satisfies

$$
y(t)=20+6 \cos \left(\frac{\pi}{5}(t-2)\right)
$$

Examples
Equivalent Sine and Cosine Models Return to Annual Temperature Variation Other Examples

Body Temperature

Body Temperature Model：Suppose that measurements on a particular individual show
－A high body temperature of $37.1^{\circ} \mathrm{C}$ at 10 am
－A low body temperature of $36.7^{\circ} \mathrm{C}$ at 10 pm
Assume body temperature T and a model of the form

$$
T(t)=A+B \cos (\omega(t-\phi))
$$

－Find the constants A, B, ω ，and ϕ with $B>0, \omega>0$ ，and $\phi \in[0,24)$
－Graph the model
－Find the equivalent sine model

Body Temperature

Circadian Rhythms：

－Humans，like many organisms，undergo circadian rhythms for many of their bodily functions
－Circadian rhythms are the daily fluctuations that are driven by the light／dark cycle of the Earth
－Seems to affect the pineal gland in the head
－This temperature normally varies a few tenths of a degree in each individual with distinct regularity
－The body is usually at its hottest around 10 or 11 AM and at its coolest in the late evening，which helps encourage sleep
Introduction
Annual Temperature Cycles
Trigonometric Functions
Trigonometric Models

Vertical Shift and Amplitude Frequency and Period Frequency a
Examples
Pxamples
Equivalent Sine and Cosine Models Return to Annual Temperature Variation
Other Examples

Body Temperature

Solution：Compute the various parameters
－The vertical shift satisfies

$$
A=\frac{37.1+36.7}{2}=36.9
$$

－The amplitude satisfies

$$
B=37.1-36.9=0.2
$$

－Since the period is $P=24$ hours，the frequency，ω ， satisfies

$$
\omega=\frac{2 \pi}{24}=\frac{\pi}{12}
$$

Solution（cont）：Compute the phase shift
－The maximum of $37.1^{\circ} \mathrm{C}$ occur at $t=10 \mathrm{am}$
－The cosine function has its maximum when its argument is 0 （or any integer multiple of 2π ）
－The appropriate phase shift solves

$$
\omega(10-\phi)=0 \quad \text { or } \quad \phi=10
$$

| Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉 | $(65 / 67)$ |
| ---: | :--- | :--- |
| Introduction | Vertical Shift and Amplitude
 Frequency and Period |
| Phase Shift | |
| Examples | |

Body Temperature

Solution（cont）：The sine model for body temperature is

$$
T(t)=36.9+0.2 \sin \left(\frac{\pi}{12}\left(t-\phi_{2}\right)\right)
$$

－The vertical shift，amplitude，and frequency match the cosine model
－From our formula above

$$
\phi_{2}=10-\frac{\pi}{2 \omega}=10-6=4
$$

－The sine model satisfies

$$
T(t)=36.9+0.2 \sin \left(\frac{\pi}{12}(t-4)\right)
$$

