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Introduction

Introduction

We need a proper definition for the integral
Riemann sums provide the basis for the integral
The integral represents the area under a curve
The proper definition suggests means to numerically
compute the integral
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Salton Sea 1

Salton Sea: One of the world’s largest inland seas created by
accident when a dike broke during the construction of the
All-American Canal in 1905

Popular recreation area for boating and fishing
Crucial region for birds on migration because loss of water
habitat
Sea is 228 ft below sea level, so water only lost by
evaporation
Agricultural activities result in serious pollution problems
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Salton Sea 2

Area of Salton Sea: How can we determine the area of the
Salton sea?

One technique is to cut out the image of the lake and weigh
it against a standard measured area
Computers have advanced software that measure the area
quite accurately by a simple scanning or tracing process
Place a refined grid on the picture and determine the area
All these schemes use the process of integration
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Salton Sea 3

Area of Salton Sea: Use a gridding scheme over an image

The area is determined by counting the number of squares
that include the image of the Salton Sea

If a box is at least 50% full, we will count it
If a box is less than 50% full, we will not count it

As the boxes get smaller the estimate of the area of the
Salton Sea becomes more accurate
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Salton Sea 4

Salton Sea grid with 6 mi on a side
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Salton Sea 5

Area of Salton Sea: Using the 6 mi square grid with 50% rule

8 squares apply to this rule
Each square is a 36 square mile area
This approximation gives 288 square miles
Assuming the actual area of the basin is 360 square miles,
the error is 20%
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Salton Sea grid with 3 mi on a side
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Salton Sea 7

Area of Salton Sea: Using the 3 mi square grid with 50% rule

33 squares apply to this rule
Each square is a 9 square mile area
This approximation gives 297 square miles
Assuming the actual area of the basin is 360 square miles,
the error is 17.5%
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Salton Sea grid with 1.5 mi on a side
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Salton Sea 9

Area of Salton Sea: Using the 1.5 mi square grid with 50%
rule

137 squares apply to this rule
Each square is a 2.25 square mile area
This approximation gives 308.25 square miles
Assuming the actual area of the basin is 360 square miles,
the error is 14%
From the figure it is easy to see that shrinking the squares
gives a better and better approximation of the area
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Area under a Curve 1

Area under a Curve: Consider the function

f(x) = x3 − 6 x2 + 9x + 2 for x ∈ [0, 5]

The actual area under the curve is 28.75

Approximate area with rectangles under the curve
Divide the interval x ∈ [0, 5] into even intervals
Use the midpoint of the interval to get height of the
rectangle
Examine approximation as intervals get smaller
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Area under a Curve 2

Area under a Curve Divide x ∈ [0, 5] into 5 intervals

0 1 2 3 4 5
0

2

4

6

8

10

12

14

16

18

20

22

  5 rectangles under the curve

x
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Area under a Curve 3

Area under a Curve: Height of rectangles from the function

f(x) = x3 − 6 x2 + 9x + 2 for x ∈ [0, 5]

Width of the rectangles are ∆x = 1
Height of rectangles evaluated at midpoints
Approximate area satisfies

A ≈ (
f

(
1
2

)
+ f

(
3
2

)
+ f

(
5
2

)
+ f

(
7
2

)
+ f

(
9
2

))
∆x =

4∑
i=0

f
(
i + 1

2

)·1
This gives

A ≈
4∑

i=0

((
i + 1

2

)3 − 6
(
i + 1

2

)2 + 9
(
i + 1

2

)
+ 2

)
= 28.125

This is 2.17% less than the actual area
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Area under a Curve 4

Area under a Curve Divide x ∈ [0, 5] into 10 intervals

0 1 2 3 4 5
0

2

4

6

8

10

12

14

16

18

20

22

10 rectangles under the curve

x
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Area under a Curve 5

Area under a Curve: Height of rectangles from the function

f(x) = x3 − 6 x2 + 9x + 2 for x ∈ [0, 5]

Width of the rectangles are ∆x = 1
2

Height of rectangles evaluated at midpoints
Approximate area satisfies

A ≈
9∑

i=0

f
(

i
2 + 1

4

)
∆x

This gives

A ≈ 1
2

9∑
i=0

((
i
2 + 1

4

)3 − 6
(

i
2 + 1

4

)2 + 9
(

i
2 + 1

4

)
+ 2

)
= 28.59375

This is 0.543% less than the actual area
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Area under a Curve 6

Area under a Curve Divide x ∈ [0, 5] into 20 intervals

0 1 2 3 4 5
0

2

4

6

8

10

12

14

16

18

20

22

20 rectangles under the curve

x
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Area under a Curve 7

Area under a Curve: Height of rectangles from the function

f(x) = x3 − 6 x2 + 9x + 2 for x ∈ [0, 5]

Width of the rectangles are ∆x = 1
4

Height of rectangles evaluated at midpoints
Approximate area satisfies

A ≈
19∑
i=0

f
(

i
4 + 1

8

)
∆x

This gives

A ≈ 1
4

19∑
i=0

((
i
4 + 1

8

)3 − 6
(

i
4 + 1

8

)2 + 9
(

i
4 + 1

8

)
+ 2

)
= 28.7109

This is 0.135% less than the actual area
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Area under a Curve 8

Area under a Curve Divide x ∈ [0, 5] into 40 intervals

0 1 2 3 4 5
0

2

4

6

8

10

12

14

16

18

20

22

40 rectangles under the curve

x
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Area under a Curve 9

Area under a Curve: Height of rectangles from the function

f(x) = x3 − 6 x2 + 9x + 2 for x ∈ [0, 5]

Width of the rectangles are ∆x = 1
8

Height of rectangles evaluated at midpoints
Approximate area satisfies

A ≈
39∑
i=0

f
(

i
8 + 1

16

)
∆x

This gives

A ≈ 1
8

39∑
i=0

((
i
8 + 1

16

)3 − 6
(

i
8 + 1

16

)2 + 9
(

i
8 + 1

16

)
+ 2

)
= 28.7402

This is 0.034% less than the actual area
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Definition of Riemann Integral 1

Definition of Riemann Integral: Suppose that we want to
find the area under some continuous function f(x) between
x = a and x = b

Divide the interval [a, b] into a large number of very small
intervals
For simplicity of discussion, divide the interval into n even
intervals (though Riemann sums do not require this
restriction)
Also, for simplicity, evaluate the function, f(x), at the
midpoint of any subinterval
Technically, it is important that one could arbitrarily take
any point in the interval, but that is beyond the scope of
this course
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Definition of Riemann Integral 2

Let x0 = a and xn = b and define ∆x = b−a
n with

xi = a + i∆x for i = 0, ..., n

This partitions the interval [a, b] into n subintervals
[xi−1, xi] each with length ∆x

The midpoint of each of these intervals is given by

ci =
xi + xi−1

2
The height of the approximating rectangle is found by
evaluating the function at the midpoint, ci

The area of the rectangle, Ri, over the interval [xi−1, xi] is
given by its height times its width or

Ri = f(ci)∆x
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Definition of Riemann Integral 3

Figures below show a single rectangle in computing area of the
Riemann Integral and all of the rectangles using the
Midpoint Rule for approximating the area under the curve

y=f(x)

f(c
i
)

a bx
i−1

x
i

y=f(x)

f(c
i
)

a=x
0

x
1

x
2

x
n
=bx

i−1
x

i
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Definition of Riemann Integral 4

Midpoint Rule for Integration is a method for
approximating integrals

Consider a continuous function f(x) and an interval
x ∈ [a, b]
Subdivide the interval into n pieces, evaluating the
function at the midpoints
The area under f(x) is approximated by adding the areas
of the rectangles

Sn =
n∑

i=1

f(ci)∆x

This is the Midpoint Rule for Integration
Like Euler’s Method, there are much better numerical
methods for integration
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Definition of Riemann Integral 5

Riemann Sums and Riemann Integral

The Midpoint Rule described above is a specialized form
of Riemann sums

The more general form of Riemann sums allows the
subintervals to have varying lengths, ∆xi

The choice of where the function is evaluated need not be
at the midpoint as described above
The Riemann integral is defined using a limiting process,
similar to the one described above
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Definition of Riemann Integral 6

Let f(x) be a continuous function in the interval [a, b]
Partition the interval [a, b] into n subintervals [xi−1, xi]
with ∆xi = xi − xi−1 and ∆xk being the largest
Let ci be some point in the subinterval [xi−1, xi]
The nth Riemann sum is given by

Sn =
n∑

i=1

f(ci)∆xi

The Riemann integral is defined by∫ b

a
f(x)dx = lim

∆xk→0

n∑
i=1

f(ci)∆xi
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Numerical Methods for Integration

Numerical Methods for Integration

Many integrals cannot be solved exactly
The Riemann integral has a number of methods for finding
approximate solutions
The Riemann integral represents the area under a function
on a specified interval
This is a definite integral∫ b

a
f(x)dx
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Midpoint Rule

Midpoint Rule was discussed above and is reviewed below

Let f(x) be a continuous function on the interval [a, b]
The interval of integration [a, b] is divided into n
subintervals [xi−1, xi] with length ∆x = b−a

n

The midpoint of each of these intervals is ci = xi+xi−1

2

Height of an approximating rectangle, f(ci)
The Midpoint Rule satisfies∫ b

a
f(x)dx ≈

n∑
i=1

f(ci)∆x
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Trapezoid Rule 1

Trapezoid Rule approximates the area under a curve using
trapezoids

Let f(x) be a continuous function on the interval [a, b]
The interval of integration [a, b] is divided into n
subintervals [xi−1, xi] with length ∆x = b−a

n

The function is evaluated at the endpoints of the
subintervals
A line segment is formed between these function
evaluations on each subinterval creating a trapezoid
The Trapezoid Rule satisfies∫ b

a
f(x)dx ≈

(
1
2f(x0) +

n−1∑
i=1

f(xi) + 1
2f(xn)

)
∆x
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Trapezoid Rule 2

Diagram for Trapezoid Rule: Note that the trapezoid rule
has a similar accuracy has the Midpoint Rule

0 1 2 3 4 5
0 

4 

8 

12 

16 

20 

x

y

Trapezoid Rule
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Trapezoid Rule 3

Trapezoid Rule: Use illustration above

f(x) = x3 − 6 x2 + 9x + 2 for x ∈ [0, 5]

The interval [0, 5] is divided into 5 subintervals with length
∆x = 1
Height of the function are evaluated at endpoints of the
subintervals
The Trapezoid Rule gives∫ b

a
f(x)dx ≈ (

1
2f(0) + f(1) + f(2) + f(3) + f(4) + 1

2f(5)
)
∆x

=
(

1
22 + 6 + 4 + 2 + 6 + 1

222
) · 1 = 30

The actual integral value is 28.75, so the approximation is
4.3% too high (similar error to the midpoint rule)
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Simpson’s Rule 1

Simpson’s Rule obtains a much more accurate approximation to the
integral without having a significantly more complicated formula

Simpson’s rule approximates the function f(x) by quadratics

The interval of integration [a, b] is divided n subintervals
[xi−1, xi]

Length ∆x = b−a
n

The endpoints are x0 = a and xn = b
n must be an even integer

The formula for Simpson’s rule is∫ b

a

f(x)dx ≈ (f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + 2f(x4) + ...

+2f(xn−2) + 4f(xn−1) + f(xn))
∆x

3
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Example 1

Example: Use the Midpoint rule, Trapezoid rule, and
Simpson’s rule to approximate the integral∫ 2

0
x2dx

with n = 4

Solution: With n = 4 the four subintervals are
[
0, 1

2

]
,
[

1
2 , 1

]
,[

1, 3
2

]
, and

[
3
2 , 2

]
, so ∆x = 1

2

The midpoints are ci = 1
4 , 3

4 , 5
4 , and 7

4
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Example 2

Solution: With ∆x = 1
2 , the Midpoint rule gives

∫ 2

0
x2dx ≈

4∑
i=1

f(ci)∆x

=
4∑

i=1

(
i
2 − 1

4

)2 1
2

=
(

1+9+25+49
16

)
1
2

=
21
8

= 2.625
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Example 3

Solution: With ∆x = 1
2 , the Trapezoid rule gives∫ 2

0
x2dx ≈

(
1
2f(x0) +

∑3
i=1 f(xi) + 1

2f(x4)
)

∆x

=
(

1
20 +

(
1
2

)2 + (1)2 +
(

3
2

)2 + 1
2(2)2

)
1
2

= 2.75
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Example 4

Solution: With ∆x = 1
2 , Simpson’s rule gives∫ 2

0
x2dx ≈ (

f(0) + 4f
(

1
2

)
+ 2f(1) + 4f

(
3
2

)
+ f(2)

) ∆x

3

=
(
0 + 4

(
1
2

)2 + 2(1)2 + 4
(

3
2

)2 + (2)2
)

1
6

= 8
3

This is the exact answer. Simpson’s rule gives the exact answer
for any quadratic.
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Example 2 1

Example 2: Consider the function

f(x) = 9− x2

Find the area in the first quadrant under the curve
Sketch a graph showing the area under the graph
Use the Midpoint rule, Trapezoid rule, and Simpson’s
rule to approximate the integral with n = 6

Solution: The function intersects the x-axis at x = 3
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Example 2 2

Solution: Graph of f(x) in the first quadrant

0 0.5 1 1.5 2 2.5 3
0 

2 

4 

6 

8 

10 

x

y

f(x)= 9 − x2
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Example 2 3

Solution (cont): The integral defining the area in the
previous figure is ∫ 3

0
(9− x2)dx

The integral has limits x = 0 and x = 3, so with n = 6 the
subintervals have length, ∆x = 1

2

The midpoints of the subintervals are

ci = i
2 − 1

4 i = 1, ..., 6
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Example 2 4

Solution (cont): With ∆x = 1
2 , the Midpoint rule gives

∫ 3

0

(9− x2)dx ≈
6∑

i=1

f(ci)∆x

=
6∑

i=1

(
9− (

i
2 − 1

4

)2
)

1
2

= (8.9375 + 8.4375 + 7.4375 + 5.9375
+3.9375 + 1.4375) 1

2

= 18.0625
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Example 2 5

Solution: With ∆x = 1
2 and xi = i

2 , the Trapezoid rule gives

∫ 2

0

(9− x2)dx ≈
(

1
2f(0) +

∑5
i=1 f(xi) + 1

2f(3)
)

∆x

= (4.5 + 8.75 + 8 + 6.75 + 5 + 2.75 + 0) 1
2

= 17.875
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Example 2 6

Solution: With ∆x = 1
2 , Simpson’s rule gives

∫ 2

0

(9− x2)dx ≈ (
f(0) + 4f

(
1
2

)
+ 2f(1) + 4f

(
3
2

)
+ 2f(2)

+4f
(

5
2

)
+ f(3)

) ∆x

3
= (9 + 4(8.75) + 2(8) + 4(6.75) + 2(5) + 4(2.75) + 0)1

6

= 18

This is the exact answer
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Temperature Example 1

Temperature Example: Insects are an important agricultural pest

Some pesticides have there greatest effects at particular stages of
the insect development

Timing of application of the pesticide can be very significant

Maturation of insects is often dependent upon temperature more
than length of time

It can be important to track the cumulative temperature rather
than the length of time that an insect has been around

Cumulative temperature Tc (in ◦C-hr) is found by integrating
the temperature T (t) over a period of time

Tc =
∫ b

a

T (t)dt
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Temperature Example 2

Temperature Example: Data for temperatures (noon to
7 PM)

Time 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00
Temp(◦C) 33 34 36 35 32 30 26 24

Use the Trapezoid rule and the data from the table to
approximate the cumulative temperature from noon to 7 PM

Note: The average temperature is 31.25 ◦C
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Temperature Example 3

Solution: Since the length of time between the temperature
measurements is one hour, ∆t = 1

The Trapezoid rule gives

Tc =
∫ 19

12

T (t)dt

≈
(

1
2T (12) +

18∑
i=13

T (i) + 1
2T (19)

)
∆t

= (16.5 + 34 + 36 + 35 + 32 + 30 + 26 + 12) · 1
= 221.5 ◦C · hr

This varies slightly from computing the average temperature
and multiplying by the length of time (31.25× 7 = 218.75)
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