Calculus for the Life Sciences II

Lecture Notes－Riemann Sums and Numerical Integration

Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉

Department of Mathematics and Statistics Dynamical Systems Group
Dynamical Systems Rearp Center
Computational Sciences Research Con
San Diego State University
San Diego State University
San Diego，CA 92182－7720
http：／／www－rohan．sdsu．edu／～jmahaffy
Fall 2012Introduction
（2）Examples
－Salton Sea
－Area under a Curve
（3）Riemann Integral
－Midpoint Rule for Integration
－Definition of Riemann Integral
（4）
Numerical Methods for Integration
－Midpoint Rule
－Trapezoid Rule
－Simpson＇s Rule
－Example
－Temperature Example
Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉 \quad－（1／46）
Introduction
Examples
Riemann Integral $\underset{\text { Numerical }}{\text { Methods for Integration }}$

Introduction

Introduction

－We need a proper definition for the integral
－Riemann sums provide the basis for the integral
－The integral represents the area under a curve
－The proper definition suggests means to numerically compute the integral

Outline

Salton Sea：One of the world＇s largest inland seas created by accident when a dike broke during the construction of the All－American Canal in 1905
－Popular recreation area for boating and fishing
－Crucial region for birds on migration because loss of water habitat
－Sea is 228 ft below sea level，so water only lost by evaporation
－Agricultural activities result in serious pollution problems

Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉
（4／46）

Area of Salton Sea: How can we determine the area of the Salton sea?

- One technique is to cut out the image of the lake and weigh it against a standard measured area
- Computers have advanced software that measure the area quite accurately by a simple scanning or tracing process
- Place a refined grid on the picture and determine the area
- All these schemes use the process of integration

Salton Sea grid with 6 mi on a side
scale- grids are 6 mi per side

\square

Salton Sea grid with 3 mi on a side
Salton Sea
scale－grids are 3 miles per side

Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉

Examples
Riemann Integral
Salton Sea
Area under a Curve
Numerical Methods for Integration
Area under a Curve

Salton Sea grid with 1.5 mi on a side

－chatarids are 15 mile

Area of Salton Sea：Using the 3 mi square grid with 50% rule
－ 33 squares apply to this rule
－Each square is a 9 square mile area
－This approximation gives 297 square miles
－Assuming the actual area of the basin is 360 square miles， the error is 17.5%

Area of Salton Sea：Using the 1.5 mi square grid with 50% rule
－ 137 squares apply to this rule
－Each square is a 2.25 square mile area
－This approximation gives 308.25 square miles
－Assuming the actual area of the basin is 360 square miles， the error is 14%
－From the figure it is easy to see that shrinking the squares gives a better and better approximation of the area

Area under a Curve：Consider the function

$$
f(x)=x^{3}-6 x^{2}+9 x+2 \quad \text { for } \quad x \in[0,5]
$$

－The actual area under the curve is $\mathbf{2 8 . 7 5}$
－Approximate area with rectangles under the curve
－Divide the interval $x \in[0,5]$ into even intervals
－Use the midpoint of the interval to get height of the rectangle
－Examine approximation as intervals get smaller

$(13 / 46)$

Numerical Methods for Integration

Area under a Curve

Area under a Curve：Height of rectangles from the function

$$
f(x)=x^{3}-6 x^{2}+9 x+2 \quad \text { for } \quad x \in[0,5]
$$

－Width of the rectangles are $\Delta x=1$
－Height of rectangles evaluated at midpoints
－Approximate area satisfies

$$
A \approx\left(f\left(\frac{1}{2}\right)+f\left(\frac{3}{2}\right)+f\left(\frac{5}{2}\right)+f\left(\frac{7}{2}\right)+f\left(\frac{9}{2}\right)\right) \Delta x=\sum_{i=0}^{4} f\left(i+\frac{1}{2}\right) \cdot 1
$$

－This gives

$$
A \approx \sum_{i=0}^{4}\left(\left(i+\frac{1}{2}\right)^{3}-6\left(i+\frac{1}{2}\right)^{2}+9\left(i+\frac{1}{2}\right)+2\right)=28.125
$$

－This is 2.17% less than the actual area

Area under a Curve Divide $x \in[0,5]$ into 5 intervals

Area under a Curve Divide $x \in[0,5]$ into 10 intervals

Area under a Curve

Area under a Curve：Height of rectangles from the function

$$
f(x)=x^{3}-6 x^{2}+9 x+2 \quad \text { for } \quad x \in[0,5]
$$

－Width of the rectangles are $\Delta x=\frac{1}{2}$
－Height of rectangles evaluated at midpoints
－Approximate area satisfies

$$
A \approx \sum_{i=0}^{9} f\left(\frac{i}{2}+\frac{1}{4}\right) \Delta x
$$

－This gives
$A \approx \frac{1}{2} \sum_{i=0}^{9}\left(\left(\frac{i}{2}+\frac{1}{4}\right)^{3}-6\left(\frac{i}{2}+\frac{1}{4}\right)^{2}+9\left(\frac{i}{2}+\frac{1}{4}\right)+2\right)=28.59375$
－This is 0.543% less than the actual area SOSO
Joseph M．Mahaffy，〈mahaffyemath．sdsu．edu〉
Introduction
Examples
Examples
Riemann Integral
Numerical Methods for Integration
Area under a Curve

Area under a Curve

Area under a Curve：Height of rectangles from the function

$$
f(x)=x^{3}-6 x^{2}+9 x+2 \quad \text { for } \quad x \in[0,5]
$$

－Width of the rectangles are $\Delta x=\frac{1}{4}$
－Height of rectangles evaluated at midpoints
－Approximate area satisfies

$$
A \approx \sum_{i=0}^{19} f\left(\frac{i}{4}+\frac{1}{8}\right) \Delta x
$$

－This gives

$$
A \approx \frac{1}{4} \sum_{i=0}^{19}\left(\left(\frac{i}{4}+\frac{1}{8}\right)^{3}-6\left(\frac{i}{4}+\frac{1}{8}\right)^{2}+9\left(\frac{i}{4}+\frac{1}{8}\right)+2\right)=28.7109
$$

－This is 0.135% less than the actual area

Area under a Curve Divide $x \in[0,5]$ into 20 intervals

Area under a Curve

Area under a Curve：Height of rectangles from the function

$$
f(x)=x^{3}-6 x^{2}+9 x+2 \quad \text { for } \quad x \in[0,5]
$$

－Width of the rectangles are $\Delta x=\frac{1}{8}$
－Height of rectangles evaluated at midpoints
－Approximate area satisfies

$$
A \approx \sum_{i=0}^{39} f\left(\frac{i}{8}+\frac{1}{16}\right) \Delta x
$$

－This gives

$$
A \approx \frac{1}{8} \sum_{i=0}^{39}\left(\left(\frac{i}{8}+\frac{1}{16}\right)^{3}-6\left(\frac{i}{8}+\frac{1}{16}\right)^{2}+9\left(\frac{i}{8}+\frac{1}{16}\right)+2\right)=28.7402
$$

－This is 0.034% less than the actual area
（21／46）

Definition of Riemann Integral

－Let $x_{0}=a$ and $x_{n}=b$ and define $\Delta x=\frac{b-a}{n}$ with $x_{i}=a+i \Delta x$ for $i=0, \ldots, n$
－This partitions the interval $[a, b]$ into n subintervals $\left[x_{i-1}, x_{i}\right]$ each with length Δx
－The midpoint of each of these intervals is given by

$$
c_{i}=\frac{x_{i}+x_{i-1}}{2}
$$

－The height of the approximating rectangle is found by evaluating the function at the midpoint，c_{i}
－The area of the rectangle，R_{i} ，over the interval $\left[x_{i-1}, x_{i}\right]$ is given by its height times its width or

$$
R_{i}=f\left(c_{i}\right) \Delta x
$$

Definition of Riemann Integral

Definition of Riemann Integral：Suppose that we want to find the area under some continuous function $f(x)$ between $x=a$ and $x=b$
－Divide the interval $[a, b]$ into a large number of very small intervals
－For simplicity of discussion，divide the interval into n even intervals（though Riemann sums do not require this restriction）
－Also，for simplicity，evaluate the function，$f(x)$ ，at the midpoint of any subinterval
－Technically，it is important that one could arbitrarily take any point in the interval，but that is beyond the scope of this course

Figures below show a single rectangle in computing area of the
Riemann Integral and all of the rectangles using the
Midpoint Rule for approximating the area under the curve

Midpoint Rule for Integration is a method for approximating integrals
－Consider a continuous function $f(x)$ and an interval $x \in[a, b]$
－Subdivide the interval into n pieces，evaluating the function at the midpoints
－The area under $f(x)$ is approximated by adding the areas of the rectangles

$$
S_{n}=\sum_{i=1}^{n} f\left(c_{i}\right) \Delta x
$$

－This is the Midpoint Rule for Integration
－Like Euler＇s Method，there are much better numerical methods for integration

Definition of Riemann Integral

－Let $f(x)$ be a continuous function in the interval $[a, b]$
－Partition the interval $[a, b]$ into n subintervals $\left[x_{i-1}, x_{i}\right]$ with $\Delta x_{i}=x_{i}-x_{i-1}$ and Δx_{k} being the largest
－Let c_{i} be some point in the subinterval $\left[x_{i-1}, x_{i}\right]$
－The $n^{\text {th }}$ Riemann sum is given by

$$
S_{n}=\sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i}
$$

－The Riemann integral is defined by

$$
\int_{a}^{b} f(x) d x=\lim _{\Delta x_{k} \rightarrow 0} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i}
$$

Riemann Sums and Riemann Integral

－The Midpoint Rule described above is a specialized form of Riemann sums
－The more general form of Riemann sums allows the subintervals to have varying lengths，Δx_{i}
－The choice of where the function is evaluated need not be at the midpoint as described above
－The Riemann integral is defined using a limiting process， similar to the one described above

| Introduction
 Examples
 Riemann Integral |
| :---: | | Midpoint Rule |
| :--- |
| Numerical Methods for Integration |

Numerical Methods for Integration

－Many integrals cannot be solved exactly
－The Riemann integral has a number of methods for finding approximate solutions
－The Riemann integral represents the area under a function on a specified interval
－This is a definite integral

$$
\int_{a}^{b} f(x) d x
$$

Midpoint Rule

Midpoint Rule was discussed above and is reviewed below
－Let $f(x)$ be a continuous function on the interval $[a, b]$
－The interval of integration $[a, b]$ is divided into n subintervals $\left[x_{i-1}, x_{i}\right]$ with length $\Delta x=\frac{b-a}{n}$
－The midpoint of each of these intervals is $c_{i}=\frac{x_{i}+x_{i-1}}{2}$
－Height of an approximating rectangle，$f\left(c_{i}\right)$
－The Midpoint Rule satisfies

$$
\int_{a}^{b} f(x) d x \approx \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x
$$

		5050
Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉	－（29／46）	
Introduction Examples Riemann Integral Numerical Methods for Integration	Midpoint Rule Trapezoid Rule Simpson＇s Rule Example Temperature Example	
Trapezoid Rule		2

Diagram for Trapezoid Rule：Note that the trapezoid rule has a similar accuracy has the Midpoint Rule

Trapezoid Rule

Trapezoid Rule approximates the area under a curve using trapezoids
－Let $f(x)$ be a continuous function on the interval $[a, b]$
－The interval of integration $[a, b]$ is divided into n subintervals $\left[x_{i-1}, x_{i}\right]$ with length $\Delta x=\frac{b-a}{n}$
－The function is evaluated at the endpoints of the subintervals
－A line segment is formed between these function evaluations on each subinterval creating a trapezoid
－The Trapezoid Rule satisfies

$$
\int_{a}^{b} f(x) d x \approx\left(\frac{1}{2} f\left(x_{0}\right)+\sum_{i=1}^{n-1} f\left(x_{i}\right)+\frac{1}{2} f\left(x_{n}\right)\right) \Delta x
$$

Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉－（30／46）

Trapezoid Rule：Use illustration above

$$
f(x)=x^{3}-6 x^{2}+9 x+2 \quad \text { for } \quad x \in[0,5]
$$

－The interval $[0,5]$ is divided into 5 subintervals with length $\Delta x=1$
－Height of the function are evaluated at endpoints of the subintervals
－The Trapezoid Rule gives

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & \approx\left(\frac{1}{2} f(0)+f(1)+f(2)+f(3)+f(4)+\frac{1}{2} f(5)\right) \Delta x \\
& =\left(\frac{1}{2} 2+6+4+2+6+\frac{1}{2} 22\right) \cdot 1=30
\end{aligned}
$$

－The actual integral value is $\mathbf{2 8 . 7 5}$ ，so the approximation is 4.3% too high（similar error to the midpoint rule）

Numerical Methods for Integration

Simpson＇s Rule

Simpson＇s Rule obtains a much more accurate approximation to the integral without having a significantly more complicated formula
－Simpson＇s rule approximates the function $f(x)$ by quadratics
－The interval of integration $[a, b]$ is divided n subintervals $\left[x_{i-1}, x_{i}\right]$
－Length $\Delta x=\frac{b-a}{n}$
－The endpoints are $x_{0}=a$ and $x_{n}=b$
－n must be an even integer
－The formula for Simpson＇s rule is

$$
\begin{aligned}
\int_{a}^{b} f(x) d x \approx & \left(f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+2 f\left(x_{4}\right)+\ldots\right. \\
& \left.+2 f\left(x_{n-2}\right)+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right) \frac{\Delta x}{3}
\end{aligned}
$$

| Joseph M．Mahaffy，＜mahaffy＠math．sdsu．edu〉 | $-(33 / 46)$ |
| ---: | :--- | :--- |
| Introduction | Midpoint Rule |
| Examples | Trapezoid Rule |
| Riemann Integral | Simpson＇s Rule
 Example |
| Numerical Methods for Integration | Temperature Example |
| EXample | |

Example

Solution：With $\Delta x=\frac{1}{2}$ ，the Midpoint rule gives

$$
\begin{aligned}
\int_{0}^{2} x^{2} d x & \approx \sum_{i=1}^{4} f\left(c_{i}\right) \Delta x \\
& =\sum_{i=1}^{4}\left(\frac{i}{2}-\frac{1}{4}\right)^{2} \frac{1}{2} \\
& =\left(\frac{1+9+25+49}{16}\right) \frac{1}{2} \\
& =\frac{21}{8}=2.625
\end{aligned}
$$

Solution：With $\Delta x=\frac{1}{2}$ ，the Trapezoid rule gives

$$
\begin{aligned}
\int_{0}^{2} x^{2} d x & \approx\left(\frac{1}{2} f\left(x_{0}\right)+\sum_{i=1}^{3} f\left(x_{i}\right)+\frac{1}{2} f\left(x_{4}\right)\right) \Delta x \\
& =\left(\frac{1}{2} 0+\left(\frac{1}{2}\right)^{2}+(1)^{2}+\left(\frac{3}{2}\right)^{2}+\frac{1}{2}(2)^{2}\right) \frac{1}{2} \\
& =2.75
\end{aligned}
$$

Example

Solution：With $\Delta x=\frac{1}{2}$ ，Simpson＇s rule gives

$$
\begin{aligned}
\int_{0}^{2} x^{2} d x & \approx\left(f(0)+4 f\left(\frac{1}{2}\right)+2 f(1)+4 f\left(\frac{3}{2}\right)+f(2)\right) \frac{\Delta x}{3} \\
& =\left(0+4\left(\frac{1}{2}\right)^{2}+2(1)^{2}+4\left(\frac{3}{2}\right)^{2}+(2)^{2}\right) \frac{1}{6} \\
& =\frac{8}{3}
\end{aligned}
$$

This is the exact answer．Simpson＇s rule gives the exact answer for any quadratic．

Example 2：Consider the function

$$
f(x)=9-x^{2}
$$

－Find the area in the first quadrant under the curve
－Sketch a graph showing the area under the graph
－Use the Midpoint rule，Trapezoid rule，and Simpson＇s rule to approximate the integral with $n=6$

Solution：The function intersects the x－axis at $x=3$

Numerical Method		
Example 2		
Solution（cont）：The integral defining previous figure is		
$\int_{0}\left(9-x^{2}\right) d x$		

－The integral has limits $x=0$ and $x=3$ ，so with $n=6$ the subintervals have length，$\Delta x=\frac{1}{2}$
－The midpoints of the subintervals are

$$
c_{i}=\frac{i}{2}-\frac{1}{4} \quad i=1, \ldots, 6
$$

Solution（cont）：With $\Delta x=\frac{1}{2}$ ，the Midpoint rule gives

$$
\begin{aligned}
\int_{0}^{3}\left(9-x^{2}\right) d x & \approx \sum_{i=1}^{6} f\left(c_{i}\right) \Delta x \\
& =\sum_{i=1}^{6}\left(9-\left(\frac{i}{2}-\frac{1}{4}\right)^{2}\right) \frac{1}{2} \\
& =(8.9375+8.4375+7.4375+5.9375 \\
& \quad+3.9375+1.4375) \frac{1}{2} \\
& 18.0625
\end{aligned}
$$

Solution：With $\Delta x=\frac{1}{2}$ ，Simpson＇s rule gives

$$
\begin{aligned}
\int_{0}^{2}\left(9-x^{2}\right) d x \approx & \left(f(0)+4 f\left(\frac{1}{2}\right)+2 f(1)+4 f\left(\frac{3}{2}\right)+2 f(2)\right. \\
& \left.\quad+4 f\left(\frac{5}{2}\right)+f(3)\right) \frac{\Delta x}{3} \\
= & (9+4(8.75)+2(8)+4(6.75)+2(5)+4(2.75)+0) \frac{1}{6} \\
= & 18
\end{aligned}
$$

This is the exact answer

Solution：With $\Delta x=\frac{1}{2}$ and $x_{i}=\frac{i}{2}$ ，the Trapezoid rule gives

$$
\begin{aligned}
\int_{0}^{2}\left(9-x^{2}\right) d x & \approx\left(\frac{1}{2} f(0)+\sum_{i=1}^{5} f\left(x_{i}\right)+\frac{1}{2} f(3)\right) \Delta x \\
& =(4.5+8.75+8+6.75+5+2.75+0) \frac{1}{2} \\
& =17.875
\end{aligned}
$$

Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉 $\quad(42 / 46)$

Temperature Example：Insects are an important agricultural pest
－Some pesticides have there greatest effects at particular stages of the insect development
－Timing of application of the pesticide can be very significant
－Maturation of insects is often dependent upon temperature more than length of time
－It can be important to track the cumulative temperature rather than the length of time that an insect has been around
－Cumulative temperature T_{c}（in ${ }^{\circ} \mathrm{C}-\mathrm{hr}$ ）is found by integrating the temperature $T(t)$ over a period of time

$$
T_{c}=\int_{a}^{b} T(t) d t
$$

Temperature Example

Temperature Example：Data for temperatures（noon to 7 PM）

Time	$12: 00$	$13: 00$	$14: 00$	$15: 00$	$16: 00$	$17: 00$	$18: 00$	$19: 00$
Temp $\left({ }^{\circ} \mathrm{C}\right)$	33	34	36	35	32	30	26	24

Use the Trapezoid rule and the data from the table to approximate the cumulative temperature from noon to 7 PM

Note：The average temperature is $31.25^{\circ} \mathrm{C}$

