Calculus for the Life Sciences II
 Lecture Notes－Optimization

Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉

Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego，CA 92182－7720
http：／／www－rohan．sdsu．edu／～jmahaffy
Fall 2012

Outline

(1) Introduction
(2) Crow Predation on Whelks

- Introduction
- Optimal Foraging
- Whelk Size
- Mathematical Model for Energy
- Number of Drops as Function of Height
- Crow Energy Function
- Minimize Energy
(3) Optimal Solution
(4) Optimal Study Area
(5) Chemical Reaction

6 Examples

- Absolute Extrema of a Polynomial
- Crop Yield
- Wire Problem
- Optimal Production of a Pharmaceutical

Introduction

Introduction

－Animals are frequently devising optimal strategies to gain advantage

Introduction

Introduction

－Animals are frequently devising optimal strategies to gain advantage
－Reproducing more rapidly

Introduction

Crow Predation on Whelks Optimal Solution Optimal Study Area Chemical Reaction Examples

Introduction

Introduction

－Animals are frequently devising optimal strategies to gain advantage
－Reproducing more rapidly
－Better protection from predation

Introduction

Crow Predation on Whelks Optimal Solution Optimal Study Area

Introduction

Introduction

－Animals are frequently devising optimal strategies to gain advantage
－Reproducing more rapidly
－Better protection from predation
－Primitive animals long ago split into the prokaryotes （bacterial cells）and eukaryotes（cells in higher organisms like yeast or humans）from a common ancestor

Introduction

Crow Predation on Whelks

Introduction

Introduction

－Animals are frequently devising optimal strategies to gain advantage
－Reproducing more rapidly
－Better protection from predation
－Primitive animals long ago split into the prokaryotes （bacterial cells）and eukaryotes（cells in higher organisms like yeast or humans）from a common ancestor
－One argument contends that eukaryotic cells added complexity，size，and organization for advantage in competition

Introduction

Crow Predation on Whelks

Introduction

Introduction

－Animals are frequently devising optimal strategies to gain advantage
－Reproducing more rapidly
－Better protection from predation
－Primitive animals long ago split into the prokaryotes （bacterial cells）and eukaryotes（cells in higher organisms like yeast or humans）from a common ancestor
－One argument contends that eukaryotic cells added complexity，size，and organization for advantage in competition
－Prokaryotes stripped down their genome（eliminated junk DNA）to the minimum required for survival，to maximize reproduction

Introduction

Introduction

- Animals are frequently devising optimal strategies to gain advantage
- Reproducing more rapidly
- Better protection from predation
- Primitive animals long ago split into the prokaryotes (bacterial cells) and eukaryotes (cells in higher organisms like yeast or humans) from a common ancestor
- One argument contends that eukaryotic cells added complexity, size, and organization for advantage in competition
- Prokaryotes stripped down their genome (eliminated junk DNA) to the minimum required for survival, to maximize reproduction
- These arguments suggest that organisms try to optimize

Derivatives and Graphing

Derivatives and Graphing

- The derivative can find critical points on graphs

Derivatives and Graphing

Derivatives and Graphing

- The derivative can find critical points on graphs
- Critical points are often local minima or maxima for the function

Derivatives and Graphing

Derivatives and Graphing
－The derivative can find critical points on graphs
－Critical points are often local minima or maxima for the function
－This is one application of Calculus，where an optimal solution is found

Crow Predation on Whelks

Crow Predation on Whelks

- Sea gulls and crows have learned to feed on various mollusks by dropping their prey on rocks to break the protective shells

Optimal Foraging

Optimal Foraging - Northwestern crows (Corvus caurinus) on Mandarte Island

- Reto Zach studied Northwestern crows on Mandarte Island, British Columbia to learn about foraging for whelks (Thais lamellosa)

Optimal Foraging

Optimal Foraging - Northwestern crows (Corvus caurinus) on Mandarte Island

- Reto Zach studied Northwestern crows on Mandarte Island, British Columbia to learn about foraging for whelks (Thais lamellosa)
- Ecologists study these behaviors to give insight into optimal foraging

Optimal Foraging

Optimal Foraging－Northwestern crows（Corvus caurinus） on Mandarte Island
－Reto Zach studied Northwestern crows on Mandarte Island， British Columbia to learn about foraging for whelks（Thais lamellosa）
－Ecologists study these behaviors to give insight into optimal foraging
－Northwestern crows

Optimal Foraging

Optimal Foraging - Northwestern crows (Corvus caurinus) on Mandarte Island

- Reto Zach studied Northwestern crows on Mandarte Island, British Columbia to learn about foraging for whelks (Thais lamellosa)
- Ecologists study these behaviors to give insight into optimal foraging
- Northwestern crows
- Perch above beaches, then fly to intertidal zone

Optimal Foraging

Optimal Foraging - Northwestern crows (Corvus caurinus) on Mandarte Island

- Reto Zach studied Northwestern crows on Mandarte Island, British Columbia to learn about foraging for whelks (Thais lamellosa)
- Ecologists study these behaviors to give insight into optimal foraging
- Northwestern crows
- Perch above beaches, then fly to intertidal zone
- Select largest whelks

Optimal Foraging

Optimal Foraging - Northwestern crows (Corvus caurinus) on Mandarte Island

- Reto Zach studied Northwestern crows on Mandarte Island, British Columbia to learn about foraging for whelks (Thais lamellosa)
- Ecologists study these behaviors to give insight into optimal foraging
- Northwestern crows
- Perch above beaches, then fly to intertidal zone
- Select largest whelks
- Fly to the rocky area and drop whelks

Optimal Foraging

Optimal Foraging - Northwestern crows (Corvus caurinus) on Mandarte Island

- Reto Zach studied Northwestern crows on Mandarte Island, British Columbia to learn about foraging for whelks (Thais lamellosa)
- Ecologists study these behaviors to give insight into optimal foraging
- Northwestern crows
- Perch above beaches, then fly to intertidal zone
- Select largest whelks
- Fly to the rocky area and drop whelks
- Eat broken whelks

Introduction Crow Predation on Whelks Optimal Solution Optimal Study Area Chemical Reaction Examples

Introduction
Optimal Foraging Whelk Size
Mathematical Model for Energy
Number of Drops as Function of Height
Crow Energy Function
Minimize Energy

Foraging Strategy

Foraging Strategy

－Whelk Selection

Introduction
Crow Predation on Whelks Optimal Solution Optimal Study Area Chemical Reaction Examples

Foraging Strategy

Foraging Strategy

－Whelk Selection
－Crows search intertidal zone for largest whelks
－Take whelks to a favorite rocky area

Foraging Strategy

Foraging Strategy

- Whelk Selection
- Crows search intertidal zone for largest whelks
- Take whelks to a favorite rocky area
- Flight Strategy

Foraging Strategy

Foraging Strategy

- Whelk Selection
- Crows search intertidal zone for largest whelks
- Take whelks to a favorite rocky area
- Flight Strategy
- Fly to height of about 5 meters

Foraging Strategy

Foraging Strategy

－Whelk Selection
－Crows search intertidal zone for largest whelks
－Take whelks to a favorite rocky area
－Flight Strategy
－Fly to height of about 5 meters
－Drop whelks on rocks，repeatedly averaging 4 times

Foraging Strategy

Foraging Strategy

- Whelk Selection
- Crows search intertidal zone for largest whelks
- Take whelks to a favorite rocky area
- Flight Strategy
- Fly to height of about 5 meters
- Drop whelks on rocks, repeatedly averaging 4 times
- Eat edible parts when split open

Foraging Strategy

Foraging Strategy

- Whelk Selection
- Crows search intertidal zone for largest whelks
- Take whelks to a favorite rocky area
- Flight Strategy
- Fly to height of about 5 meters
- Drop whelks on rocks, repeatedly averaging 4 times
- Eat edible parts when split open
- Can this behavior be explained by an optimal foraging decision process?

Foraging Strategy

Foraging Strategy

- Whelk Selection
- Crows search intertidal zone for largest whelks
- Take whelks to a favorite rocky area
- Flight Strategy
- Fly to height of about 5 meters
- Drop whelks on rocks, repeatedly averaging 4 times
- Eat edible parts when split open
- Can this behavior be explained by an optimal foraging decision process?
- Is the crow exhibiting a behavior that minimizes its expenditure of energy to feed on whelks?

Introduction Crow Predation on Whelks Optimal Solution Optimal Study Area Chemical Reaction Examples

Introduction
Optimal Foraging
Whelk Size
Mathematical Model for Energy
Number of Drops as Function of Height
Crow Energy Function
Minimize Energy

Foraging Strategy

Foraging Strategy

SDSO
๑) $Q \curvearrowright$

Introduction Crow Predation on Whelks Optimal Solution Optimal Study Area Chemical Reaction Examples

Introduction
Optimal Foraging
Whelk Size
Mathematical Model for Energy
Number of Drops as Function of Height
Crow Energy Function
Minimize Energy

Why large whelks？

Why large whelks？

－Zach experiment

Introduction Crow Predation on Whelks Optimal Solution Optimal Study Area Chemical Reaction Examples

Introduction
Optimal Foraging
Whelk Size
Mathematical Model for Energy
Number of Drops as Function of Height
Crow Energy Function
Minimize Energy

Why large whelks？

Why large whelks？

－Zach experiment
－Collected and sorted whelks by size

Introduction
Crow Predation on Whelks Optimal Solution Optimal Study Area Chemical Reaction Examples

Why large whelks？

Why large whelks？

－Zach experiment
－Collected and sorted whelks by size
－Dropped whelks from various heights until they broke

Why large whelks?

Why large whelks?

- Zach experiment
- Collected and sorted whelks by size
- Dropped whelks from various heights until they broke
- Recorded how many drops at each height were required to break each whelk

Introduction
Crow Predation on Whelks Optimal Solution Optimal Study Area

Chemical Reaction
Examples

Introduction
Optimal Foraging
Whelk Size
Mathematical Model for Energy
Number of Drops as Function of Height
Crow Energy Function
Minimize Energy

Large Whelks

Large Whelks

－Easier to break open larger whelks，so crows selectively chose the largest available whelks

Large Whelks

Large Whelks

- Easier to break open larger whelks, so crows selectively chose the largest available whelks
- There was a gradient of whelk size on the beach, suggesting that the crows' foraging behavior was affecting the distribution of whelks in the intertidal zone, with larger whelks further out

Large Whelks

Large Whelks

－Easier to break open larger whelks，so crows selectively chose the largest available whelks
－There was a gradient of whelk size on the beach，suggesting that the crows＇foraging behavior was affecting the distribution of whelks in the intertidal zone，with larger whelks further out
－Crows benefit by selecting the larger ones because they don＇t need as many drops per whelk，and they gain more energy from consuming a larger one

Large Whelks

Large Whelks

- Easier to break open larger whelks, so crows selectively chose the largest available whelks
- There was a gradient of whelk size on the beach, suggesting that the crows' foraging behavior was affecting the distribution of whelks in the intertidal zone, with larger whelks further out
- Crows benefit by selecting the larger ones because they don't need as many drops per whelk, and they gain more energy from consuming a larger one
- Study showed that the whelks broken on the rocks were remarkably similar in size, weighing about 9 grams

Number of Drops

Zach Observation - Height of the drops and number of drops required for many crows to eat whelks used a marked pole on the beach near a favorite dropping location

0
NUMBER OF DROPS PER WHELK
Joseph M. Mahaffy, 〈mahaffy@math.sdsu.edu〉
Lecture Notes - Optimization
$-(11 / 52)$

Introduction Crow Predation on Whelks Optimal Solution Optimal Study Area Chemical Reaction Examples

Introduction
Optimal Foraging
Whelk Size
Mathematical Model for Energy
Number of Drops as Function of Height
Crow Energy Function
Minimize Energy

Optimization Problem

Optimization Problem
－So why do the crows consistently fly to about 5.25 m and use about 4.4 drops to split open a whelk？

Optimization Problem

Optimization Problem

- So why do the crows consistently fly to about 5.25 m and use about 4.4 drops to split open a whelk?
- Can this be explained by a mathematical model for minimizing the energy spent, thus supporting an optimal foraging strategy?

Mathematical Model for Energy

Mathematical Model for Energy

－Energy is directly proportional to the vertical height that an object is lifted（Work put into a system）

Mathematical Model for Energy

Mathematical Model for Energy

- Energy is directly proportional to the vertical height that an object is lifted (Work put into a system)
- The energy that a crow expends breaking open a whelk

Mathematical Model for Energy

Mathematical Model for Energy

- Energy is directly proportional to the vertical height that an object is lifted (Work put into a system)
- The energy that a crow expends breaking open a whelk
- The amount of time the crow uses to search for an appropriate whelk

Mathematical Model for Energy

Mathematical Model for Energy

－Energy is directly proportional to the vertical height that an object is lifted（Work put into a system）
－The energy that a crow expends breaking open a whelk
－The amount of time the crow uses to search for an appropriate whelk
－The energy in flying to the site where the rocks are

Mathematical Model for Energy

Mathematical Model for Energy

－Energy is directly proportional to the vertical height that an object is lifted（Work put into a system）
－The energy that a crow expends breaking open a whelk
－The amount of time the crow uses to search for an appropriate whelk
－The energy in flying to the site where the rocks are
－The energy required to lift the whelk to a certain height and drop it times the number of vertical flights required to split open the whelk

Mathematical Model for Energy

Mathematical Model for Energy

－Energy is directly proportional to the vertical height that an object is lifted（Work put into a system）
－The energy that a crow expends breaking open a whelk
－The amount of time the crow uses to search for an appropriate whelk
－The energy in flying to the site where the rocks are
－The energy required to lift the whelk to a certain height and drop it times the number of vertical flights required to split open the whelk

Mathematical Model for Energy

Mathematical Model for Energy

- Energy is directly proportional to the vertical height that an object is lifted (Work put into a system)
- The energy that a crow expends breaking open a whelk
- The amount of time the crow uses to search for an appropriate whelk
- The energy in flying to the site where the rocks are
- The energy required to lift the whelk to a certain height and drop it times the number of vertical flights required to split open the whelk
- Concentrate only on this last component of the problem, as it was observed that the crows kept with the same whelk until they broke it open rather than searching for another whelk when one failed to break after a few attempts \equiv,

Introduction
Crow Predation on Whelks Optimal Solution Optimal Study Area

Chemical Reaction Examples

Introduction
Optimal Foraging
Whelk Size
Mathematical Model for Energy
Number of Drops as Function of Height
Crow Energy Function
Minimize Energy

Mathematical Model for Energy

Energy Function

- The energy is given by the height (H) times the number of drops (N) or

$$
E=k H N
$$

where k is a constant of proportionality

Mathematical Model for Energy

Energy Function

- The energy is given by the height (H) times the number of drops (N) or

$$
E=k H N
$$

where k is a constant of proportionality

- Flying higher and increasing the number of drops both increase the use of energy

Mathematical Model for Energy

Fitting the Data - Zach's data on dropping large whelks

$H(m)$	1.5	2	3	4	5	6	7	8	10	15
$N(H)$	56	20	10.2	7.6	6	5	4.3	3.8	3.1	2.5

Mathematical Model for Energy

Fitting the Data - Zach's data on dropping large whelks

$H(m)$	1.5	2	3	4	5	6	7	8	10	15
$N(H)$	56	20	10.2	7.6	6	5	4.3	3.8	3.1	2.5

- Since it always requires at least one drop, the proposed function for the number of drops, N, as a function of height, H is

$$
N(H)=1+\frac{a}{H-b}
$$

Mathematical Model for Energy

Fitting the Data - Zach's data on dropping large whelks

$H(m)$	1.5	2	3	4	5	6	7	8	10	15
$N(H)$	56	20	10.2	7.6	6	5	4.3	3.8	3.1	2.5

- Since it always requires at least one drop, the proposed function for the number of drops, N, as a function of height, H is

$$
N(H)=1+\frac{a}{H-b}
$$

- The least squares best fit of this function to Zach's data gives $a=15.97$ and $b=1.209$

Introduction
Crow Predation on Whelks Optimal Solution Optimal Study Area

Chemical Reaction Examples

Introduction
Optimal Foraging
Whelk Size
Mathematical Model for Energy
Number of Drops as Function of Height
Crow Energy Function
Minimize Energy

Mathematical Model for Energy

Graph for Whelks being Dropped

Whelk Drop

Introduction
Crow Predation on Whelks Optimal Solution Optimal Study Area

Mathematical Model for Energy

Graph of Energy Function - The energy function is

$$
E(H)=k H\left(1+\frac{a}{H-b}\right)
$$

Mathematical Model for Energy

Minimization Problem－Energy satisfies

$$
E(H)=k H\left(1+\frac{a}{H-b}\right)
$$

－A minimum energy is apparent from the graph with the value around 5.6 m ，which is close to the observed value that Zach found the crows to fly when dropping whelks

```
Optimal Foraging
Whelk Size
Mathematical Model for Energy
Number of Drops as Function of Height
Crow Energy Function
Minimize Energy
```


Mathematical Model for Energy

Minimization Problem - Energy satisfies

$$
E(H)=k H\left(1+\frac{a}{H-b}\right)
$$

- A minimum energy is apparent from the graph with the value around 5.6 m , which is close to the observed value that Zach found the crows to fly when dropping whelks
- The derivative of $E(H)$ is

$$
E^{\prime}(H)=k\left(1+\frac{a}{H-b}-\frac{a H}{(H-b)^{2}}\right)=k\left(\frac{H^{2}-2 b H+b^{2}-a b}{(H-b)^{2}}\right)
$$

```
Optimal Foraging
Whelk Size
Mathematical Model for Energy
Number of Drops as Function of Height
Crow Energy Function
Minimize Energy
```


Mathematical Model for Energy

Minimization Problem - Energy satisfies

$$
E(H)=k H\left(1+\frac{a}{H-b}\right)
$$

- A minimum energy is apparent from the graph with the value around 5.6 m , which is close to the observed value that Zach found the crows to fly when dropping whelks
- The derivative of $E(H)$ is

$$
E^{\prime}(H)=k\left(1+\frac{a}{H-b}-\frac{a H}{(H-b)^{2}}\right)=k\left(\frac{H^{2}-2 b H+b^{2}-a b}{(H-b)^{2}}\right)
$$

- The optimal energy occurs at the minimum, where

$$
E^{\prime}(H)=0
$$

Mathematical Model for Energy

Minimization Problem－The derivative of the Energy function is

$$
E^{\prime}(H)=k\left(\frac{H^{2}-2 b H+b^{2}-a b}{(H-b)^{2}}\right)
$$

－The derivative is zero if the numerator is zero

Mathematical Model for Energy

Minimization Problem - The derivative of the Energy function is

$$
E^{\prime}(H)=k\left(\frac{H^{2}-2 b H+b^{2}-a b}{(H-b)^{2}}\right)
$$

- The derivative is zero if the numerator is zero
- The numerator is a quadratic with solution

$$
H=b \pm \sqrt{a b}=1.209 \pm 4.394
$$

Mathematical Model for Energy

Minimization Problem - The derivative of the Energy function is

$$
E^{\prime}(H)=k\left(\frac{H^{2}-2 b H+b^{2}-a b}{(H-b)^{2}}\right)
$$

- The derivative is zero if the numerator is zero
- The numerator is a quadratic with solution

$$
H=b \pm \sqrt{a b}=1.209 \pm 4.394
$$

- Thus, $H=5.603$ is the minimum energy ($H=-3.185$ is a maximum, but fails to make sense)

```
Optimal Foraging
Whelk Size
Mathematical Model for Energy
Number of Drops as Function of Height
Crow Energy Function
Minimize Energy
```


Mathematical Model for Energy

Minimization Problem - The derivative of the Energy function is

$$
E^{\prime}(H)=k\left(\frac{H^{2}-2 b H+b^{2}-a b}{(H-b)^{2}}\right)
$$

- The derivative is zero if the numerator is zero
- The numerator is a quadratic with solution

$$
H=b \pm \sqrt{a b}=1.209 \pm 4.394
$$

- Thus, $H=5.603$ is the minimum energy ($H=-3.185$ is a maximum, but fails to make sense)
- This computed minimum concurs with the experimental observations, suggesting an optimal foraging strategy

Optimal Solution

Optimal Solution

- One application of the derivative is to find critical points where often a function has a relative minimum or maximum

Optimal Solution

Optimal Solution

- One application of the derivative is to find critical points where often a function has a relative minimum or maximum
- An optimal solution for a function is when the function takes on an absolute minimum or maximum over its domain

Optimal Solution

Optimal Solution

- One application of the derivative is to find critical points where often a function has a relative minimum or maximum
- An optimal solution for a function is when the function takes on an absolute minimum or maximum over its domain

Definition: An absolute minimum for a function $f(x)$ occurs at a point $x=c$, if $f(c)<f(x)$ for all x in the domain of f

Optimal Solution

Optimal Solution

Theorem: Suppose that $f(x)$ is a continuous, differential function on a closed interval $I=[a, b]$, then $f(x)$ achieves its absolute minimum (or maximum) on I and its minimum (or maximum) occurs either at a point where $f^{\prime}(x)=0$ or at one of the endpoints of the interval

Optimal Study Area

Optimal Study Area: An ecology student goes into the field with 120 m of string and wants to create two adjacent rectangular study areas with the maximum area possible

Optimal Study Area

Solution－Optimal Study Area：The Objective Function

 for this problem is the area of the rectangular plots
Optimal Study Area

Solution - Optimal Study Area: The Objective Function

 for this problem is the area of the rectangular plotsThe area of each rectangular plot is

$$
A(x, y)=x y
$$

Optimal Study Area

Solution - Optimal Study Area: The Objective Function for this problem is the area of the rectangular plots

The area of each rectangular plot is

$$
A(x, y)=x y
$$

The optimal solution uses all string

Optimal Study Area

Solution - Optimal Study Area: The Objective Function for this problem is the area of the rectangular plots

The area of each rectangular plot is

$$
A(x, y)=x y
$$

The optimal solution uses all string
The Constraint Condition is the length of string available

$$
P(x, y)=4 x+3 y=120
$$

Optimal Study Area

Solution (cont): This problem allows the objective function of two variables to be reduced by the constraint condition to a function of one variable that can readily be optimized

Optimal Study Area

Solution (cont): This problem allows the objective function of two variables to be reduced by the constraint condition to a function of one variable that can readily be optimized

- The constraint condition is solved for y to give

$$
y=\frac{120-4 x}{3}
$$

Optimal Study Area

Solution (cont): This problem allows the objective function of two variables to be reduced by the constraint condition to a function of one variable that can readily be optimized

- The constraint condition is solved for y to give

$$
y=\frac{120-4 x}{3}
$$

- The objective function becomes

$$
A(x)=x \frac{120-4 x}{3}=40 x-\frac{4 x^{2}}{3}
$$

Optimal Study Area

Solution (cont): This problem allows the objective function of two variables to be reduced by the constraint condition to a function of one variable that can readily be optimized

- The constraint condition is solved for y to give

$$
y=\frac{120-4 x}{3}
$$

- The objective function becomes

$$
A(x)=x \frac{120-4 x}{3}=40 x-\frac{4 x^{2}}{3}
$$

- The domain of this function is $x \in[0,30]$

Optimal Study Area

Solution (cont): The objective function is a parabola

Optimal Study Area

Solution (cont): The optimal solution is the maximum area for the function

$$
A(x)=40 x-\frac{4 x^{2}}{3}
$$

Optimal Study Area

Solution (cont): The optimal solution is the maximum area for the function

$$
A(x)=40 x-\frac{4 x^{2}}{3}
$$

- The maximum area occurs at the vertex of this parabola

Optimal Study Area

Solution (cont): The optimal solution is the maximum area for the function

$$
A(x)=40 x-\frac{4 x^{2}}{3}
$$

- The maximum area occurs at the vertex of this parabola
- Alternately, we differentiate the objective function with

$$
A^{\prime}(x)=40-\frac{8 x}{3}
$$

Optimal Study Area

Solution (cont): The optimal solution is the maximum area for the function

$$
A(x)=40 x-\frac{4 x^{2}}{3}
$$

- The maximum area occurs at the vertex of this parabola
- Alternately, we differentiate the objective function with

$$
A^{\prime}(x)=40-\frac{8 x}{3}
$$

- The critical point occurs when $A^{\prime}\left(x_{c}\right)=0$ or $x_{c}=15$

Optimal Study Area

Solution (cont): The optimal solution is the maximum area for the function

$$
A(x)=40 x-\frac{4 x^{2}}{3}
$$

- The maximum area occurs at the vertex of this parabola
- Alternately, we differentiate the objective function with

$$
A^{\prime}(x)=40-\frac{8 x}{3}
$$

- The critical point occurs when $A^{\prime}\left(x_{c}\right)=0$ or $x_{c}=15$
- The maximum area occurs with $x=15 \mathrm{~m}$ and $y=20 \mathrm{~m}$

Optimal Study Area

Solution (cont): The optimal solution is the maximum area for the function

$$
A(x)=40 x-\frac{4 x^{2}}{3}
$$

- The maximum area occurs at the vertex of this parabola
- Alternately, we differentiate the objective function with

$$
A^{\prime}(x)=40-\frac{8 x}{3}
$$

- The critical point occurs when $A^{\prime}\left(x_{c}\right)=0$ or $x_{c}=15$
- The maximum area occurs with $x=15 \mathrm{~m}$ and $y=20 \mathrm{~m}$
- To maximize the study areas, the ecology student should make each of the two study areas 15 m wide and 20 m long or $A_{\max }=300 \mathrm{~m}^{2}$

Chemical Reaction

Chemical Reaction: One of the simplest chemical reactions is the combination of two substances to form a third

$$
A+B \xrightarrow{k} X
$$

Chemical Reaction

Chemical Reaction: One of the simplest chemical reactions is the combination of two substances to form a third

$$
A+B \xrightarrow{k} X
$$

- Assume the initial concentration of substance A is a and the initial concentration of B is b

Chemical Reaction

Chemical Reaction: One of the simplest chemical reactions is the combination of two substances to form a third

$$
A+B \xrightarrow{k} X
$$

- Assume the initial concentration of substance A is a and the initial concentration of B is b
- The law of mass action gives the following reaction rate

$$
R(x)=k(a-x)(b-x), \quad 0 \leq x \leq \min (a, b)
$$

Chemical Reaction

Chemical Reaction: One of the simplest chemical reactions is the combination of two substances to form a third

$$
A+B \xrightarrow{k} X
$$

- Assume the initial concentration of substance A is a and the initial concentration of B is b
- The law of mass action gives the following reaction rate

$$
R(x)=k(a-x)(b-x), \quad 0 \leq x \leq \min (a, b)
$$

- k is the rate constant of the reaction and x is the concentration of X during the reaction

Chemical Reaction

Chemical Reaction: One of the simplest chemical reactions is the combination of two substances to form a third

$$
A+B \xrightarrow{k} X
$$

- Assume the initial concentration of substance A is a and the initial concentration of B is b
- The law of mass action gives the following reaction rate

$$
R(x)=k(a-x)(b-x), \quad 0 \leq x \leq \min (a, b)
$$

- k is the rate constant of the reaction and x is the concentration of X during the reaction
- What is the concentration of X where the reaction rate is at a maximum?

Chemical Reaction

Chemical Reaction: Suppose that $k=50\left(\mathrm{sec}^{-1}\right), a=6$ (ppm), and $b=2$ (ppm), so

$$
R(x)=50(6-x)(2-x)=50 x^{2}-400 x+600, \quad 0 \leq x \leq 2
$$

Chemical Reaction

Chemical Reaction: Suppose that $k=50\left(\mathrm{sec}^{-1}\right), a=6$ (ppm), and $b=2$ (ppm), so

$$
R(x)=50(6-x)(2-x)=50 x^{2}-400 x+600, \quad 0 \leq x \leq 2
$$

- The derivative is

$$
R^{\prime}(x)=100 x-400
$$

Chemical Reaction

Chemical Reaction: Suppose that $k=50\left(\mathrm{sec}^{-1}\right), a=6$ (ppm), and $b=2$ (ppm), so

$$
R(x)=50(6-x)(2-x)=50 x^{2}-400 x+600, \quad 0 \leq x \leq 2
$$

- The derivative is

$$
R^{\prime}(x)=100 x-400
$$

- The critical point (where $R^{\prime}(x)=0$) is $x_{c}=4$

Chemical Reaction

Chemical Reaction: Suppose that $k=50\left(\mathrm{sec}^{-1}\right), a=6$ (ppm), and $b=2$ (ppm), so

$$
R(x)=50(6-x)(2-x)=50 x^{2}-400 x+600, \quad 0 \leq x \leq 2
$$

- The derivative is

$$
R^{\prime}(x)=100 x-400
$$

- The critical point (where $R^{\prime}(x)=0$) is $x_{c}=4$
- This critical point is outside the domain (and produces a negative reaction rate)

Chemical Reaction

Chemical Reaction: Suppose that $k=50\left(\mathrm{sec}^{-1}\right), a=6$ (ppm), and $b=2$ (ppm), so

$$
R(x)=50(6-x)(2-x)=50 x^{2}-400 x+600, \quad 0 \leq x \leq 2
$$

- The derivative is

$$
R^{\prime}(x)=100 x-400
$$

- The critical point (where $R^{\prime}(x)=0$) is $x_{c}=4$
- This critical point is outside the domain (and produces a negative reaction rate)
- At the endpoints

Chemical Reaction

Chemical Reaction: Suppose that $k=50\left(\mathrm{sec}^{-1}\right), a=6$ (ppm), and $b=2$ (ppm), so

$$
R(x)=50(6-x)(2-x)=50 x^{2}-400 x+600, \quad 0 \leq x \leq 2
$$

- The derivative is

$$
R^{\prime}(x)=100 x-400
$$

- The critical point (where $R^{\prime}(x)=0$) is $x_{c}=4$
- This critical point is outside the domain (and produces a negative reaction rate)
- At the endpoints
- At $x=0$,the reaction rate is $R(0)=600$ (maximum)

Chemical Reaction

Chemical Reaction：Suppose that $k=50\left(\mathrm{sec}^{-1}\right), a=6$ （ppm），and $b=2$（ppm），so

$$
R(x)=50(6-x)(2-x)=50 x^{2}-400 x+600, \quad 0 \leq x \leq 2
$$

－The derivative is

$$
R^{\prime}(x)=100 x-400
$$

－The critical point（where $R^{\prime}(x)=0$ ）is $x_{c}=4$
－This critical point is outside the domain（and produces a negative reaction rate）
－At the endpoints
－At $x=0$ ，the reaction rate is $R(0)=600$（maximum）
－At $x=2$ ，the reaction rate is $R(2)=0$（minimum）

Chemical Reaction

Chemical Reaction: Graphing the Reaction Rate

Absolute Extrema of a Polynomial Crop Yield

Absolute Extrema of a Polynomial

Absolute Extrema of a Polynomial: Consider the cubic polynomial $f(x)$ defined on the interval $x \in[0,5]$, where

$$
f(x)=x^{3}-6 x^{2}+9 x+4
$$

Absolute Extrema of a Polynomial Crop Yield

Absolute Extrema of a Polynomial

Absolute Extrema of a Polynomial: Consider the cubic polynomial $f(x)$ defined on the interval $x \in[0,5]$, where

$$
f(x)=x^{3}-6 x^{2}+9 x+4
$$

Find the absolute extrema of this polynomial on its domain

Introduction
Crow Predation on Whelks Optimal Solution Optimal Study Area Chemical Reaction Examples

Absolute Extrema of a Polynomial Crop Yield
Wire Problem
Optimal Production of a Pharmaceutical

Absolute Extrema of a Polynomial

Solution: The cubic polynomial

$$
f(x)=x^{3}-6 x^{2}+9 x+4
$$

Absolute Extrema of a Polynomial Crop Yield
Wire Problem
Optimal Production of a Pharmaceutical

Absolute Extrema of a Polynomial

Solution: The cubic polynomial

$$
f(x)=x^{3}-6 x^{2}+9 x+4
$$

- The derivative is

$$
f^{\prime}(x)=3 x^{2}-12 x+9=3(x-1)(x-3)
$$

Absolute Extrema of a Polynomial

Absolute Extrema of a Polynomial

Solution: The cubic polynomial

$$
f(x)=x^{3}-6 x^{2}+9 x+4
$$

- The derivative is

$$
f^{\prime}(x)=3 x^{2}-12 x+9=3(x-1)(x-3)
$$

- Critical points occur at $x_{c}=1$ and $x_{c}=3$

Absolute Extrema of a Polynomial

Solution: The cubic polynomial

$$
f(x)=x^{3}-6 x^{2}+9 x+4
$$

- The derivative is

$$
f^{\prime}(x)=3 x^{2}-12 x+9=3(x-1)(x-3)
$$

- Critical points occur at $x_{c}=1$ and $x_{c}=3$
- To find the absolute extrema, we evaluate $f(x)$ at the critical points and the endpoints of the domain

Absolute Extrema of a Polynomial

Solution: The cubic polynomial

$$
f(x)=x^{3}-6 x^{2}+9 x+4
$$

- The derivative is

$$
f^{\prime}(x)=3 x^{2}-12 x+9=3(x-1)(x-3)
$$

- Critical points occur at $x_{c}=1$ and $x_{c}=3$
- To find the absolute extrema, we evaluate $f(x)$ at the critical points and the endpoints of the domain
- $f(0)=4$ (an absolute minimum)

Absolute Extrema of a Polynomial

Solution: The cubic polynomial

$$
f(x)=x^{3}-6 x^{2}+9 x+4
$$

- The derivative is

$$
f^{\prime}(x)=3 x^{2}-12 x+9=3(x-1)(x-3)
$$

- Critical points occur at $x_{c}=1$ and $x_{c}=3$
- To find the absolute extrema, we evaluate $f(x)$ at the critical points and the endpoints of the domain
- $f(0)=4$ (an absolute minimum)
- $f(1)=8$ (an relative maximum)

Absolute Extrema of a Polynomial

Solution: The cubic polynomial

$$
f(x)=x^{3}-6 x^{2}+9 x+4
$$

- The derivative is

$$
f^{\prime}(x)=3 x^{2}-12 x+9=3(x-1)(x-3)
$$

- Critical points occur at $x_{c}=1$ and $x_{c}=3$
- To find the absolute extrema, we evaluate $f(x)$ at the critical points and the endpoints of the domain
- $f(0)=4$ (an absolute minimum)
- $f(1)=8$ (an relative maximum)
- $f(3)=4$ (an absolute minimum)

Absolute Extrema of a Polynomial

Solution: The cubic polynomial

$$
f(x)=x^{3}-6 x^{2}+9 x+4
$$

- The derivative is

$$
f^{\prime}(x)=3 x^{2}-12 x+9=3(x-1)(x-3)
$$

- Critical points occur at $x_{c}=1$ and $x_{c}=3$
- To find the absolute extrema, we evaluate $f(x)$ at the critical points and the endpoints of the domain
- $f(0)=4$ (an absolute minimum)
- $f(1)=8$ (an relative maximum)
- $f(3)=4$ (an absolute minimum)
- $f(5)=24$ (an absolute maximum)

Introduction Crow Predation on Whelks Optimal Solution Optimal Study Area Chemical Reaction Examples

Absolute Extrema of a Polynomial Crop Yield
Wire Problem
Optimal Production of a Pharmaceutical

Absolute Extrema of a Polynomial

Solution: Graph of cubic polynomial
Absolute Extrema


```
Absolute Extrema of a Polynomial
Crop Yield
Wire Problem
Optimal Production of a Pharmaceutical
```


Crop Yield

Example：Crop Yield The yield of an agricultural crop depends on the nitrogen in the soil

Skip Example

```
Absolute Extrema of a Polynomial
Crop Yield
Wire Problem
Optimal Production of a Pharmaceutical
```


Crop Yield

Example：Crop Yield The yield of an agricultural crop depends on the nitrogen in the soil

Skip Example

－Crops cannot grow without a source of nitrogen（except many legumes）

Crop Yield

Example：Crop Yield The yield of an agricultural crop depends on the nitrogen in the soil

Skip Example

－Crops cannot grow without a source of nitrogen（except many legumes）
－If there is too much nitrogen，it becomes toxic and decreases the yield

Crop Yield

Example: Crop Yield The yield of an agricultural crop depends on the nitrogen in the soil

Skip Example

- Crops cannot grow without a source of nitrogen (except many legumes)
- If there is too much nitrogen, it becomes toxic and decreases the yield
- Suppose that the yield of a particular agricultural crop satisfies the function of nitrogen, N (in scaled units)

$$
Y(N)=\frac{N}{1+N^{2}}
$$

Crop Yield

Example：Crop Yield The yield of an agricultural crop depends on the nitrogen in the soil

Skip Example

－Crops cannot grow without a source of nitrogen（except many legumes）
－If there is too much nitrogen，it becomes toxic and decreases the yield
－Suppose that the yield of a particular agricultural crop satisfies the function of nitrogen，N（in scaled units）

$$
Y(N)=\frac{N}{1+N^{2}}
$$

－Find the nitrogen level that produces the maximum crop yield

Introduction Crow Predation on Whelks Optimal Solution Optimal Study Area Chemical Reaction Examples

Absolute Extrema of a Polynomial Crop Yield
Wire Problem
Optimal Production of a Pharmaceutical

Crop Yield

Solution: Crop yield for $N \geq 0$ satisfies $Y(N)=\frac{N}{1+N^{2}}$

Crop Yield

Absolute Extrema of a Polynomial Crop Yield
Wire Problem
Optimal Production of a Pharmaceutical

Solution: Crop yield for $N \geq 0$ satisfies $Y(N)=\frac{N}{1+N^{2}}$

- The derivative is

$$
Y^{\prime}(N)=\frac{\left(1+N^{2}\right)-N \cdot 2 N}{\left(1+N^{2}\right)^{2}}=\frac{1-N^{2}}{\left(1+N^{2}\right)^{2}}
$$

Absolute Extrema of a Polynomial Crop Yield
Wire Problem
Optimal Production of a Pharmaceutical

Crop Yield

Solution：Crop yield for $N \geq 0$ satisfies $Y(N)=\frac{N}{1+N^{2}}$
－The derivative is

$$
Y^{\prime}(N)=\frac{\left(1+N^{2}\right)-N \cdot 2 N}{\left(1+N^{2}\right)^{2}}=\frac{1-N^{2}}{\left(1+N^{2}\right)^{2}}
$$

－$Y^{\prime}\left(N_{c}\right)=0$ when numerator is zero，so critical points occur at $N_{c}=-1$ and $N_{c}=1$

Crop Yield

Solution: Crop yield for $N \geq 0$ satisfies $Y(N)=\frac{N}{1+N^{2}}$

- The derivative is

$$
Y^{\prime}(N)=\frac{\left(1+N^{2}\right)-N \cdot 2 N}{\left(1+N^{2}\right)^{2}}=\frac{1-N^{2}}{\left(1+N^{2}\right)^{2}}
$$

- $Y^{\prime}\left(N_{c}\right)=0$ when numerator is zero, so critical points occur at $N_{c}=-1$ and $N_{c}=1$
- Only $N_{c}=1$ is in the domain with $Y(1)=0.5$ being the absolute maximum

Crop Yield

Solution: Crop yield for $N \geq 0$ satisfies $Y(N)=\frac{N}{1+N^{2}}$

- The derivative is

$$
Y^{\prime}(N)=\frac{\left(1+N^{2}\right)-N \cdot 2 N}{\left(1+N^{2}\right)^{2}}=\frac{1-N^{2}}{\left(1+N^{2}\right)^{2}}
$$

- $Y^{\prime}\left(N_{c}\right)=0$ when numerator is zero, so critical points occur at $N_{c}=-1$ and $N_{c}=1$
- Only $N_{c}=1$ is in the domain with $Y(1)=0.5$ being the absolute maximum
- The endpoints are $N=0$ and $N \rightarrow \infty$
- $Y(0)=0$ is an absolute minimum

Crop Yield

Solution: Crop yield for $N \geq 0$ satisfies $Y(N)=\frac{N}{1+N^{2}}$

- The derivative is

$$
Y^{\prime}(N)=\frac{\left(1+N^{2}\right)-N \cdot 2 N}{\left(1+N^{2}\right)^{2}}=\frac{1-N^{2}}{\left(1+N^{2}\right)^{2}}
$$

- $Y^{\prime}\left(N_{c}\right)=0$ when numerator is zero, so critical points occur at $N_{c}=-1$ and $N_{c}=1$
- Only $N_{c}=1$ is in the domain with $Y(1)=0.5$ being the absolute maximum
- The endpoints are $N=0$ and $N \rightarrow \infty$
- $Y(0)=0$ is an absolute minimum
- As $N \rightarrow \infty, Y(N) \rightarrow 0$, confirming that we found the absolute maximum

Absolute Extrema of a Polynomial

 Crop YieldWire Problem
Optimal Production of a Pharmaceutical

Crop Yield

Solution: Graph of crop yield function
Crop Yield

Introduction Crow Predation on Whelks Optimal Solution Optimal Study Area

Chemical Reaction Examples

Absolute Extrema of a Polynomial Crop Yield
Wire Problem
Optimal Production of a Pharmaceutical

Wire Problem

Example：Wire Problem A wire length L is cut to make a circle and a square

Skip Example

Absolute Extrema of a Polynomial Crop Yield
Wire Problem
Optimal Production of a Pharmaceutical

Wire Problem

Example: Wire Problem A wire length L is cut to make a circle and a square

Skip Example

How should the cut be made to maximize the area enclosed by the two shapes?

Introduction
Crow Predation on Whelks Optimal Solution Optimal Study Area

Chemical Reaction Examples

Absolute Extrema of a Polynomial Crop Yield
Wire Problem
Optimal Production of a Pharmaceutical

Wire Problem

Solution：The circle has area πr^{2} ，and the square has area x^{2}

```
Absolute Extrema of a Polynomial
Crop Yield
Wire Problem
Optimal Production of a Pharmaceutical
```


Wire Problem

Solution: The circle has area πr^{2}, and the square has area x^{2} The Objective Function to be optimized is

$$
A(r, x)=\pi r^{2}+x^{2}
$$

```
Absolute Extrema of a Polynomial
Crop Yield
Wire Problem
Optimal Production of a Pharmaceutical
```

Solution: The circle has area πr^{2}, and the square has area x^{2} The Objective Function to be optimized is

$$
A(r, x)=\pi r^{2}+x^{2}
$$

The Constraint Condition based on the length of the wire

$$
L=2 \pi r+4 x
$$

with domain $x \in\left[0, \frac{L}{4}\right]$

Wire Problem

Solution: The circle has area πr^{2}, and the square has area x^{2} The Objective Function to be optimized is

$$
A(r, x)=\pi r^{2}+x^{2}
$$

The Constraint Condition based on the length of the wire

$$
L=2 \pi r+4 x
$$

with domain $x \in\left[0, \frac{L}{4}\right]$
From the constraint, r satisfies

$$
r=\frac{L-4 x}{2 \pi}
$$

Wire Problem

Absolute Extrema of a Polynomial Crop Yield
Wire Problem
Optimal Production of a Pharmaceutical

Solution: With the constraint condition, the area function becomes

$$
A(x)=\frac{(L-4 x)^{2}}{4 \pi}+x^{2}
$$

Absolute Extrema of a Polynomial Crop Yield
Wire Problem
Optimal Production of a Pharmaceutical

Wire Problem

Solution: With the constraint condition, the area function becomes

$$
A(x)=\frac{(L-4 x)^{2}}{4 \pi}+x^{2}
$$

Differentiating $A(x)$ gives

$$
A^{\prime}(x)=\frac{2(L-4 x)(-4)}{4 \pi}+2 x=2\left(\left(\frac{4+\pi}{\pi}\right) x-\frac{L}{\pi}\right)
$$

Absolute Extrema of a Polynomial Crop Yield
Wire Problem
Optimal Production of a Pharmaceutical

Wire Problem

Solution: With the constraint condition, the area function becomes

$$
A(x)=\frac{(L-4 x)^{2}}{4 \pi}+x^{2}
$$

Differentiating $A(x)$ gives

$$
A^{\prime}(x)=\frac{2(L-4 x)(-4)}{4 \pi}+2 x=2\left(\left(\frac{4+\pi}{\pi}\right) x-\frac{L}{\pi}\right)
$$

Relative extrema satisfy $A^{\prime}(x)=0$, so

$$
(4+\pi) x=L
$$

Introduction
Crow Predation on Whelks Optimal Solution Optimal Study Area

Chemical Reaction Examples

Absolute Extrema of a Polynomial Crop Yield
Wire Problem
Optimal Production of a Pharmaceutical

Wire Problem

Solution: The relative extremum occurs at

$$
x=\frac{L}{4+\pi}
$$

```
Absolute Extrema of a Polynomial
Crop Yield
Wire Problem
Optimal Production of a Pharmaceutical
```


Wire Problem

Solution: The relative extremum occurs at

$$
x=\frac{L}{4+\pi}
$$

- The second derivative of $A(x)$ is

$$
A^{\prime \prime}(x)=\frac{8}{\pi}+2>0
$$

```
Absolute Extrema of a Polynomial
Crop Yield
Wire Problem
Optimal Production of a Pharmaceutical
```

Solution: The relative extremum occurs at

$$
x=\frac{L}{4+\pi}
$$

- The second derivative of $A(x)$ is

$$
A^{\prime \prime}(x)=\frac{8}{\pi}+2>0
$$

- The function is concave upward, so the critical point is a minimum

Wire Problem

Solution: The relative extremum occurs at

$$
x=\frac{L}{4+\pi}
$$

- The second derivative of $A(x)$ is

$$
A^{\prime \prime}(x)=\frac{8}{\pi}+2>0
$$

- The function is concave upward, so the critical point is a minimum
- $A(x)$ is a quadratic with the leading coefficient being positive, so the vertex of the parabola is the minimum

Wire Problem

Solution: The relative extremum occurs at

$$
x=\frac{L}{4+\pi}
$$

- The second derivative of $A(x)$ is

$$
A^{\prime \prime}(x)=\frac{8}{\pi}+2>0
$$

- The function is concave upward, so the critical point is a minimum
- $A(x)$ is a quadratic with the leading coefficient being positive, so the vertex of the parabola is the minimum
- Cutting the wire at $x=\frac{L}{4+\pi}$ gives the minimum possible area

Wire Problem

Solution：To find the maximum the Theorem for an Optimal Solution requires checking the endpoints

Wire Problem

Absolute Extrema of a Polynomial Crop Yield
Wire Problem
Optimal Production of a Pharmaceutical

Solution：To find the maximum the Theorem for an Optimal Solution requires checking the endpoints
－The endpoints

```
Absolute Extrema of a Polynomial
Crop Yield
Wire Problem
Optimal Production of a Pharmaceutical
```


Wire Problem

Solution：To find the maximum the Theorem for an Optimal Solution requires checking the endpoints
－The endpoints
－All in the circle，$x=0, A(0)=\frac{L^{2}}{4 \pi}$

```
Absolute Extrema of a Polynomial
Crop Yield
Wire Problem
Optimal Production of a Pharmaceutical
```


Wire Problem

Solution: To find the maximum the Theorem for an Optimal Solution requires checking the endpoints

- The endpoints
- All in the circle, $x=0, A(0)=\frac{L^{2}}{4 \pi}$
- All in the square, $x=\frac{L}{4}, A\left(\frac{L}{4}\right)=\frac{L^{2}}{16}$

```
Absolute Extrema of a Polynomial
Crop Yield
Wire Problem
Optimal Production of a Pharmaceutical
```


Wire Problem

Solution：To find the maximum the Theorem for an Optimal Solution requires checking the endpoints
－The endpoints
－All in the circle，$x=0, A(0)=\frac{L^{2}}{4 \pi}$
－All in the square，$x=\frac{L}{4}, A\left(\frac{L}{4}\right)=\frac{L^{2}}{16}$
－Since $4 \pi<16, A(0)>A\left(\frac{L}{4}\right)$

Wire Problem

Solution：To find the maximum the Theorem for an Optimal Solution requires checking the endpoints
－The endpoints
－All in the circle，$x=0, A(0)=\frac{L^{2}}{4 \pi}$
－All in the square，$x=\frac{L}{4}, A\left(\frac{L}{4}\right)=\frac{L^{2}}{16}$
－Since $4 \pi<16, A(0)>A\left(\frac{L}{4}\right)$
－The maximum occurs when the wire is used to create a circle

Wire Problem

Solution：To find the maximum the Theorem for an Optimal Solution requires checking the endpoints
－The endpoints
－All in the circle，$x=0, A(0)=\frac{L^{2}}{4 \pi}$
－All in the square，$x=\frac{L}{4}, A\left(\frac{L}{4}\right)=\frac{L^{2}}{16}$
－Since $4 \pi<16, A(0)>A\left(\frac{L}{4}\right)$
－The maximum occurs when the wire is used to create a circle
－Geometrically，a circle is the most efficient conversion of a linear measurement into area

```
Absolute Extrema of a Polynomial
Crop Yield
Wire Problem
Optimal Production of a Pharmaceutical
```


Wire Problem

Solution: Graph of wire problem with $L=1$

$$
A(x)=\frac{(1-4 x)^{2}}{4 \pi}+x^{2}
$$

Optimal Production of a Pharmaceutical

Optimal Production of a Pharmaceutical
－Bacteria often regulate the production of their proteins based on their rate of growth

Optimal Production of a Pharmaceutical

Optimal Production of a Pharmaceutical
－Bacteria often regulate the production of their proteins based on their rate of growth
－Some proteins are produced in higher quantities during high growth rates

Optimal Production of a Pharmaceutical

Optimal Production of a Pharmaceutical

- Bacteria often regulate the production of their proteins based on their rate of growth
- Some proteins are produced in higher quantities during high growth rates
- Others proteins are produced at a higher rate as bacteria enter stress due to limitations in some nutrient

Optimal Production of a Pharmaceutical

Optimal Production of a Pharmaceutical
－Bacteria often regulate the production of their proteins based on their rate of growth
－Some proteins are produced in higher quantities during high growth rates
－Others proteins are produced at a higher rate as bacteria enter stress due to limitations in some nutrient
－In stationary phase，bacteria tend to produce all proteins at a significantly lower rate

Absolute Extrema of a Polynomial

Optimal Production of a Pharmaceutical

Production of a Pharmaceutical: Suppose the production, Q, depends on the population of the bacteria, B,

$$
Q(B)=2 B e^{-0.002 B}
$$

- Properties of $Q(B)$

Optimal Production of a Pharmaceutical

Production of a Pharmaceutical: Suppose the production, Q, depends on the population of the bacteria, B,

$$
Q(B)=2 B e^{-0.002 B}
$$

- Properties of $Q(B)$
- Low production for low populations of bacteria

Optimal Production of a Pharmaceutical

Production of a Pharmaceutical: Suppose the production, Q, depends on the population of the bacteria, B,

$$
Q(B)=2 B e^{-0.002 B}
$$

- Properties of $Q(B)$
- Low production for low populations of bacteria
- High population causes stress, again lowering production

```
Absolute Extrema of a Polynomial
Crop Yield
Wire Problem
Optimal Production of a Pharmaceutical
```


Optimal Production of a Pharmaceutical

Production of a Pharmaceutical：Suppose the production， Q ，depends on the population of the bacteria，B ，

$$
Q(B)=2 B e^{-0.002 B}
$$

－Properties of $Q(B)$
－Low production for low populations of bacteria
－High population causes stress，again lowering production
－Optimal at some intermediate level

Optimal Production of a Pharmaceutical

Production of a Pharmaceutical：Suppose the production， Q ，depends on the population of the bacteria，B ，

$$
Q(B)=2 B e^{-0.002 B}
$$

－Properties of $Q(B)$
－Low production for low populations of bacteria
－High population causes stress，again lowering production
－Optimal at some intermediate level
－Suppose the population of the bacteria，B ，satisfies a logistic growth curve

$$
B(t)=\frac{2000}{1+99 e^{-0.01 t}}
$$

Optimal Production of a Pharmaceutical

Optimization Problem：Find the time when the production， Q ，is at a maximum

Optimal Production of a Pharmaceutical

Optimization Problem：Find the time when the production， Q ，is at a maximum
Solution：

Optimal Production of a Pharmaceutical

Optimization Problem: Find the time when the production, Q, is at a maximum

Solution:

- The production of the pharmaceutical is a function of the population of bacteria, $Q(B)$, (in units of agent), and the population of bacteria is a function of time, $B(t)$ (with time in minutes)

Optimal Production of a Pharmaceutical

Optimization Problem：Find the time when the production， Q ，is at a maximum

Solution：

－The production of the pharmaceutical is a function of the population of bacteria，$Q(B)$ ，（in units of agent），and the population of bacteria is a function of time，$B(t)$（with time in minutes）
－Must create the composite function $Q(B(t))$ ，which is a function that depends on time，t

Optimal Production of a Pharmaceutical

Optimization Problem：Find the time when the production， Q ，is at a maximum

Solution：

－The production of the pharmaceutical is a function of the population of bacteria，$Q(B)$ ，（in units of agent），and the population of bacteria is a function of time，$B(t)$（with time in minutes）
－Must create the composite function $Q(B(t))$ ，which is a function that depends on time，t
－The production is at its maximum when $\frac{d Q}{d t}=0$

Optimal Production of a Pharmaceutical

Optimization Problem：Find the time when the production， Q ，is at a maximum

Solution：

－The production of the pharmaceutical is a function of the population of bacteria，$Q(B)$ ，（in units of agent），and the population of bacteria is a function of time，$B(t)$（with time in minutes）
－Must create the composite function $Q(B(t))$ ，which is a function that depends on time，t
－The production is at its maximum when $\frac{d Q}{d t}=0$
－Finding $\frac{d Q}{d t}$ requires the differentiation of a composite function，which uses the chain rule

Optimal Production of a Pharmaceutical

Chain Rule Problem: The composite function is $Q(B(t))$ with

$$
Q(B)=2 B e^{-0.002 B} \quad \text { and } \quad B(t)=\frac{2000}{1+99 e^{-0.01 t}}
$$

Optimal Production of a Pharmaceutical

Chain Rule Problem: The composite function is $Q(B(t))$ with

$$
Q(B)=2 B e^{-0.002 B} \quad \text { and } \quad B(t)=\frac{2000}{1+99 e^{-0.01 t}}
$$

- The chain rule for differentiating the composite function is

$$
\frac{d Q}{d t}=\frac{d Q}{d B} \frac{d B}{d t}=Q^{\prime}(B) B^{\prime}(t)
$$

Optimal Production of a Pharmaceutical

Chain Rule Problem: The composite function is $Q(B(t))$ with

$$
Q(B)=2 B e^{-0.002 B} \quad \text { and } \quad B(t)=\frac{2000}{1+99 e^{-0.01 t}}
$$

- The chain rule for differentiating the composite function is

$$
\frac{d Q}{d t}=\frac{d Q}{d B} \frac{d B}{d t}=Q^{\prime}(B) B^{\prime}(t)
$$

- The derivative of $Q(B)$ is

$$
Q^{\prime}(B)=2 e^{-0.002 B}(1-0.002 B)
$$

Optimal Production of a Pharmaceutical

Chain Rule Problem: The composite function is $Q(B(t))$ with

$$
Q(B)=2 B e^{-0.002 B} \quad \text { and } \quad B(t)=\frac{2000}{1+99 e^{-0.01 t}}
$$

- The chain rule for differentiating the composite function is

$$
\frac{d Q}{d t}=\frac{d Q}{d B} \frac{d B}{d t}=Q^{\prime}(B) B^{\prime}(t)
$$

- The derivative of $Q(B)$ is

$$
Q^{\prime}(B)=2 e^{-0.002 B}(1-0.002 B)
$$

- Notice that this has a maximum at

$$
B=500 \quad \text { with } \quad Q(500)=1000 e^{-1}=367.9
$$

Optimal Production of a Pharmaceutical

Solution: Graph of $Q(B)$
Production of Pharmaceutical

Optimal Production of a Pharmaceutical

Chain Rule Problem: The composite function is $Q(B(t))$ with

$$
Q(B)=2 B e^{-0.002 B} \quad \text { and } \quad B(t)=\frac{2000}{1+99 e^{-0.01 t}}
$$

Optimal Production of a Pharmaceutical

Chain Rule Problem: The composite function is $Q(B(t))$ with

$$
Q(B)=2 B e^{-0.002 B} \quad \text { and } \quad B(t)=\frac{2000}{1+99 e^{-0.01 t}}
$$

- The chain rule for differentiating the composite function is

$$
\frac{d Q}{d t}=\frac{d Q}{d B} \frac{d B}{d t}=Q^{\prime}(B) B^{\prime}(t)
$$

Optimal Production of a Pharmaceutical

Chain Rule Problem: The composite function is $Q(B(t))$ with

$$
Q(B)=2 B e^{-0.002 B} \quad \text { and } \quad B(t)=\frac{2000}{1+99 e^{-0.01 t}}
$$

- The chain rule for differentiating the composite function is

$$
\frac{d Q}{d t}=\frac{d Q}{d B} \frac{d B}{d t}=Q^{\prime}(B) B^{\prime}(t)
$$

- The derivative of $Q(B)$ is

$$
Q^{\prime}(B)=2 e^{-0.002 B}(1-0.002 B)
$$

Optimal Production of a Pharmaceutical

Chain Rule Problem: The composite function is $Q(B(t))$ with

$$
Q(B)=2 B e^{-0.002 B} \quad \text { and } \quad B(t)=\frac{2000}{1+99 e^{-0.01 t}}
$$

- The chain rule for differentiating the composite function is

$$
\frac{d Q}{d t}=\frac{d Q}{d B} \frac{d B}{d t}=Q^{\prime}(B) B^{\prime}(t)
$$

- The derivative of $Q(B)$ is

$$
Q^{\prime}(B)=2 e^{-0.002 B}(1-0.002 B)
$$

- Notice that this has a maximum at

$$
B=500 \quad \text { with } \quad Q(500)=1000 e^{-1}=367.9
$$

Optimal Production of a Pharmaceutical

Solution: Graph of $Q(B)$
Production of Pharmaceutical

Optimal Production of a Pharmaceutical

Solution: The bacterial population, $B(t)$, is

$$
B(t)=\frac{2000}{1+99 e^{-0.01 t}}=2000\left(1+99 e^{-0.01 t}\right)^{-1}
$$

Optimal Production of a Pharmaceutical

Solution: The bacterial population, $B(t)$, is

$$
B(t)=\frac{2000}{1+99 e^{-0.01 t}}=2000\left(1+99 e^{-0.01 t}\right)^{-1}
$$

- The derivative for $B(t)$ is

$$
\begin{aligned}
B^{\prime}(t) & =-2000\left(1+99 e^{-0.01 t}\right)^{-2}\left(99 e^{-0.01 t}\right)(-0.01) \\
& =1980 e^{-0.01 t}\left(1+99 e^{-0.01 t}\right)^{-2}
\end{aligned}
$$

Optimal Production of a Pharmaceutical

Solution: The bacterial population, $B(t)$, is

$$
B(t)=\frac{2000}{1+99 e^{-0.01 t}}=2000\left(1+99 e^{-0.01 t}\right)^{-1}
$$

- The derivative for $B(t)$ is

$$
\begin{aligned}
B^{\prime}(t) & =-2000\left(1+99 e^{-0.01 t}\right)^{-2}\left(99 e^{-0.01 t}\right)(-0.01) \\
& =1980 e^{-0.01 t}\left(1+99 e^{-0.01 t}\right)^{-2}
\end{aligned}
$$

- This function is always positive or constantly increasing

Optimal Production of a Pharmaceutical

Solution: The bacterial population, $B(t)$, is

$$
B(t)=\frac{2000}{1+99 e^{-0.01 t}}=2000\left(1+99 e^{-0.01 t}\right)^{-1}
$$

- The derivative for $B(t)$ is

$$
\begin{aligned}
B^{\prime}(t) & =-2000\left(1+99 e^{-0.01 t}\right)^{-2}\left(99 e^{-0.01 t}\right)(-0.01) \\
& =1980 e^{-0.01 t}\left(1+99 e^{-0.01 t}\right)^{-2}
\end{aligned}
$$

- This function is always positive or constantly increasing
- It increases at different rates with varying times

Optimal Production of a Pharmaceutical

Solution: Graph of $B(t)$
Population of Bacteria

Optimal Production of a Pharmaceutical

Solution: The derivative of the composite function is

$$
\frac{d Q}{d t}=Q^{\prime}(B(t)) B^{\prime}(t)=\frac{3960 e^{-0.002 B}(1-0.002 B) e^{-0.01 t}}{\left(1+99 e^{-0.01 t}\right)^{2}}
$$

Absolute Extrema of a Polynomial

Optimal Production of a Pharmaceutical

Solution: The derivative of the composite function is

$$
\frac{d Q}{d t}=Q^{\prime}(B(t)) B^{\prime}(t)=\frac{3960 e^{-0.002 B}(1-0.002 B) e^{-0.01 t}}{\left(1+99 e^{-0.01 t}\right)^{2}}
$$

- The only critical point occurs when $B=500$

Optimal Production of a Pharmaceutical

Solution: The derivative of the composite function is

$$
\frac{d Q}{d t}=Q^{\prime}(B(t)) B^{\prime}(t)=\frac{3960 e^{-0.002 B}(1-0.002 B) e^{-0.01 t}}{\left(1+99 e^{-0.01 t}\right)^{2}}
$$

- The only critical point occurs when $B=500$
- We solve $B(t)=500$

$$
\begin{aligned}
\frac{2000}{1+99 e^{-0.01 t}} & =500 \\
1+99 e^{-0.01 t} & =4 \\
e^{0.01 t} & =33 \\
t & =100 \ln (33)=349.65 \mathrm{~min}
\end{aligned}
$$

Optimal Production of a Pharmaceutical

Solution：Graph of composite function $Q(B(t))$ shows that when $t_{\max }=349.65 \mathrm{~min}, Q\left(B\left(t_{\max }\right)\right)=367.9$ units

Absolute Extrema of a Polynomial Crop Yield

Optimal Production of a Pharmaceutical

Optimal Production of a Pharmaceutical

Solution: Graph of composite function $Q(B(t))$ shows that when $t_{\max }=349.65 \mathrm{~min}, Q\left(B\left(t_{\max }\right)\right)=367.9$ units This is the optimal production of the pharmaceutical

Production of Pharmaceutical

