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Introduction

Introduction

Differential Equations provide useful models
Realistic Models are often Complex
Most differential equations can not be solved exactly
Develop numerical methods to solve differential equations
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Pollution in a Lake 1

Pollution in a Lake

Previously studied a simple model for Lake Pollution

Complicate by adding time-varying pollution source
Include periodic flow for seasonal effects
Present numerical method to simulate the model
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Pollution in a Lake 2

Non-point Source of Pollution and Seasonal Flow
Variation

Consider a non-point source, such as agricultural runoff of
pesticide

Assume a pesticide is removed from the market
If the pesticide doesn’t degrade, it leaches into runoff water

Concentration of the pesticide in the river being
time-varying
Typically, there is an exponential decay after the use of the
pesticide is stopped

Example of concentration

p(t) = 5 e−0.002t
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Pollution in a Lake 3

Including Seasonal Effects

River flows vary seasonally
Assume lake maintains a constant volume, V

Seasonal flow (time varying) entering is reflected with same
outflowing flow

Example of sinusoidal annual flow

f(t) = 100 + 50 cos(0.0172t)
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Pollution in a Lake 4

Mathematical Model: Use Mass Balance

The change in amount of pollutant =
Amount entering - Amount leaving

Amount entering is concentration of the pollutant in the
river times the flow rate of the river

f(t)p(t)

Assume the lake is well-mixed
Amount leaving is concentration of the pollutant in the
lake times the flow rate of the river

f(t)c(t)

The amount of pollutant in the lake, a(t), satisfies
da

dt
= f(t)p(t)− f(t)c(t)
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Pollution in a Lake 5

Mathematical Model: Let the concentration be c(t) = a(t)
V

dc(t)
dt

=
f(t)
V

(p(t)− c(t)) with c(0) = c0

Assume that the volume of the lake is 10,000 m3 and the
initial level of pollutant in the lake is c0 = 5 ppm
With p(t) and f(t) fom before, model is

dc(t)
dt

= (0.01 + 0.005 cos(0.0172t))(5 e−0.002t − c(t))

Complicated, but an exact solution exists
Show an easier numerical method to approximate the
solution
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Euler’s Method 1

Initial Value Problem: Consider
dy

dt
= f(t, y) with y(t0) = y0

From the definition of the derivative
dy

dt
= lim

h→0

y(t + h)− y(t)
h

Instead of taking the limit, fix h, so

dy

dt
≈ y(t + h)− y(t)

h

Substitute into the differential equation and with algebra
write

y(t + h) ≈ y(t) + hf(t, y)
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Euler’s Method 2

Euler’s Method for a fixed h is

y(t + h) = y(t) + hf(t, y)

Geometrically, Euler’s method looks at the slope of the
tangent line

The approximate solution follows the tangent line for a time
step h
Repeat this process at each time step to obtain an
approximation to the solution

The ability of this method to track the solution accurately
depends on the length of the time step, h, and the nature
of the function f(t, y)
This technique is rarely used as it has very bad
convergence properties to the actual solution
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Euler’s Method 3

Graph of Euler’s Method
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Euler’s Method 4

Euler’s Method Formula: Euler’s method is just a discrete
dynamical system for approximating the solution of a
continuous model

Let tn+1 = tn + h

Define yn = y(tn)
The initial condition gives y(t0) = y0

Euler’s Method is the discrete dynamical system

yn+1 = yn + h f(tn, yn)

Euler’s Method only needs the initial condition to start and
the right hand side of the differential equation (the slope
field), f(t, y) to obtain the approximate solution
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Malthusian Growth Example 1

Malthusian Growth Example: Consider the model

dP

dt
= 0.2 P with P (0) = 50

Find the exact solution and approximate the solution with
Euler’s Method for t ∈ [0, 1] with h = 0.1

Solution: The exact solution is

P (t) = 50 e0.2t
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Malthusian Growth Example 2

Solution (cont): The Formula for Euler’s Method is

Pn+1 = Pn + h 0.2 Pn

The initial condition P (0) = 50 implies that t0 = 0 and P0 = 50

Create a table for the Euler iterates

tn Pn

t0 = 0 P0 = 50
t1 = t0 + h = 0.1 P1 = P0 + 0.1(0.2P0) = 50 + 1 = 51
t2 = t1 + h = 0.2 P2 = P1 + 0.1(0.2P1) = 51 + 1.02 = 52.02
t3 = t2 + h = 0.3 P3 = P2 + 0.1(0.2P2) = 52.02 + 1.0404 = 53.0604
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Malthusian Growth Example 3

Solution (cont): Iterations are easily continued - Below is
table of the actual solution and the Euler’s method iterates

t Euler Solution Actual Solution
0 50 50

0.1 51 51.01
0.2 52.02 52.041
0.3 53.060 53.092
0.4 54.122 54.164
0.5 55.204 55.259
0.6 56.308 56.375
0.7 57.434 57.514
0.8 58.583 58.676
0.9 59.755 59.861
1.0 60.950 61.070
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Malthusian Growth Example 4

Graph of Euler’s Method for Malthusian Growth
Example
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Malthusian Growth Example 5

Error Analysis and Larger Stepsize

The table and the graph shows that Euler’s method is
tracking the solution fairly well over the interval of the
simulation
The error at t = 1 is only 0.2%
However, this is a fairly short period of time and the
stepsize is relatively small
What happens when the stepsize is increased and the
interval of time being considered is larger?
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Graph of Euler’s Method with h = 0.5
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There is a 9% error in the numerical solution at t = 10
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Euler’s Method with f(t, y) 1

Euler’s Method with f(t, y): Consider the model

dy

dt
= y + t with y(0) = 3

Find the approximate solution with Euler’s Method at t = 1
with stepsize h = 0.25

Compare the Euler solution to the exact solution

y(t) = 4 et − t− 1
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Euler’s Method with f(t, y) 2

Solution: Verify the actual solution:
1 Initial condition:

y(0) = 4 e0 − 0− 1 = 3

2 The differential equation:

dy

dt
= 4 et − 1

y(t) + t = 4 et − t− 1 + 1 = 4 et − 1

Euler’s formula for this problem is

yn+1 = yn + h(yn + tn)
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Euler’s Method with f(t, y) 3

Solution (cont): Euler’s formula with h = 0.25 is

yn+1 = yn + 0.25(yn + tn)

tn Euler solution yn

t0 = 0 y0 = 3
t1 = 0.25 y1 = y0 + h(y0 + t0) = 3 + 0.25(3 + 0) = 3.75
t2 = 0.5 y2 = y1 + h(y1 + t1) = 3.75 + 0.25(3.75 + 0.25) = 4.75
t3 = 0.75 y3 = y2 + h(y2 + t2) = 4.75 + 0.25(4.75 + 0.5) = 6.0624
t4 = 1 y4 = y3 + h(y3 + t3) = 6.0624 + 0.25(6.0624 + 0.75) = 7.7656
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Euler’s Method with f(t, y) 4

Solution (cont): Error Analysis

y4 = 7.7656 corresponds to the approximate solution of y(1)
The actual solution gives y(1) = 8.87312, so the Euler
approximation with this large stepsize is not a very good
approximation of the actual solution with a 12.5% error
If the stepsize is reduced to h = 0.1, then Euler’s method
requires 10 steps to find an approximate solution for y(1)
It can be shown that the Euler approximate of y(1),
y10 = 8.37497, which is better, but still has a 5.6% error
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Numerical Solution of the Lake Problem 1

Numerical Solution of the Lake Problem Earlier described
a more complicated model for pollution entering a lake with an
oscillatory flow rate and an exponentially falling concentration
of the pollutant entering the lake via the river

The initial value problem with c(0) = 5 = c0

dc

dt
= (0.01 + 0.005 cos(0.0172t))(5 e−0.002t − c(t))

The Euler’s formula is

cn+1 = cn + h(0.01 + 0.005 cos(0.0172tn))(5 e−0.002tn − cn)

The model was simulated for 750 days with h = 1

Joseph M. Mahaffy, 〈mahaffy@math.sdsu.edu〉
Lecture Notes – Numerical Methods for Differen
— (23/41)

Introduction
Euler’s Method

Improved Euler’s Method

Malthusian Growth Example
Example with f(t, y)
Numerical Solution of the Lake Problem
More Examples
Time-varying Population Model

Numerical Solution of the Lake Problem 2

Graph of Simulation
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Numerical Solution of the Lake Problem 3

Simulation: This solution shows a much more complicated
behavior for the dynamics of the pollutant concentration in the
lake

Could you have predicted this behavior or determined
quantitative results, such as when the pollution level
dropped below 2 ppm?
This example is much more typical of what we might
expect from more realistic biological problems
The numerical methods allow the examination of more
complex situations, which allows the scientist to consider
more options in probing a given situation
Euler’s method for this problem traces the actual solution
very well, but better numerical methods are usually used
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Euler Example A 1

Euler Example A: Consider the initial value problem

dy

dt
= −2 y2 with y(0) = 2

Skip Example

With a stepsize of h = 0.2, use Euler’s method to
approximate y(t) at t = 1
Show that the actual solution of this problem is

y(t) =
2

4 t + 1

Determine the percent error between the approximate
solution and the actual solution at t = 1
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Euler Example A 2

Solution: Euler’s formula with h = 0.2 for this example is

yn+1 = yn − h(2y2
n) = yn − 0.4 y2

n

tn yn

t0 = 0 y0 = 2
t1 = t0 + h = 0.2 y1 = y0 − 0.4y2

0 = 2− 0.4(4) = 0.4
t2 = t1 + h = 0.4 y2 = y1 − 0.4y2

1 = −0.4− 0.4(0.16) = 0.336
t3 = t2 + h = 0.6 y3 = y2 − 0.4y2

2 = 0.336− 0.4(0.1129) = 0.2908
t4 = t3 + h = 0.8 y4 = y3 − 0.4y2

3 = 0.2908− 0.4(0.08459) = 0.2570
t5 = t4 + h = 1.0 y5 = y4 − 0.4y2

4 = 0.2570− 0.4(0.06605) = 0.2306
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Euler Example A 3

Solution (cont): Verify that the solution is

y(t) =
2

4 t + 1
= 2(4 t + 1)−1

Compute the derivative
dy

dt
= −2(4 t + 1)−2(4) = −8(4 t + 1)−2

However, −2 (y(t))2 = −2(2(4 t + 1)−1)2 = −8(4 t + 1)−2

Thus, the differential equation is satisfied by the solution
that is given
At t = 1, y(1) = 0.4
The percent error is

100× yEuler(1)− yactual

yactual(1)
=

100(0.2306− 0.4)
0.4

= −42.4%
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Euler Example B 1

Euler Example B: Consider the initial value problem

dy

dt
= 2

t

y
with y(0) = 2

Skip Example

With a stepsize of h = 0.25, use Euler’s method to
approximate y(t) at t = 1
Show that the actual solution of this problem is

y(t) =
√

2 t2 + 4

Determine the percent error between the approximate
solution and the actual solution at t = 1
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Euler Example B 2

Solution: Euler’s formula with h = 0.25 for this example is

yn+1 = yn + h

(
2tn
yn

)
= yn + 0.5

(
tn
yn

)
tn yn

t0 = 0 y0 = 2
t1 = t0 + h = 0.25 y1 = y0 + 0.5t0/y0 = 2 + 0.5(0/2) = 2
t2 = t1 + h = 0.5 y2 = y1 + 0.5t1/y1 = 2 + 0.5(0.25/2) = 2.0625
t3 = t2 + h = 0.75 y3 = y2 + 0.5t2/y2 = 2.0625 + 0.5(0.5/2) = 2.1875
t4 = t3 + h = 1.0 y4 = y3 + 0.5t3/y3 = 2.1875 + 0.5(0.75/2) = 2.375
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Euler Example B 3

Solution (cont): Verify that the solution is

y(t) = (2t2 + 4)0.5

Compute the derivative
dy

dt
= 0.5(2t2 + 4)−0.5(4t) = 2t(2t2 + 4)−0.5

However, 2t/y(t) = 2t/(2t2 + 4)0.5 = 2t(2t2 + 4)−0.5

Thus, the differential equation is satisfied by the solution
that is given
At t = 1, y(1) =

√
6 = 2.4495

The percent error is

100× yEuler(1)− yactual

yactual(1)
=

100(2.375− 2.4495)
2.4495

= −3.04%
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Time-varying Population Model 1

Time-varying Population Model: A Malthusian growth
model with a time-varying growth rate is

dP

dt
= (0.2− 0.02 t)P with P (0) = 5000

Skip Example

With a stepsize of h = 0.2, use Euler’s method to
approximate P (t) at t = 1
Show that the actual solution of this problem is

P (t) = 5000 e0.2t−0.01t2

Determine the percent error between the approximate
solution and the actual solution at t = 1
Use the actual solution to find the maximum population of
this growth model and when it occurs
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Time-varying Population Model 2

Solution: Euler’s formula with h = 0.2 for this example is

Pn+1 = Pn + h(0.2− 0.02tn)Pn

tn Pn

t0 = 0 P0 = 5000
t1 = t0 + h = 0.2 P1 = P0 + 0.2(0.2− 0.02t0)P0 = 5200
t2 = t1 + h = 0.4 P2 = P1 + 0.2(0.2− 0.02t1)P1 = 5403.8
t3 = t2 + h = 0.6 P3 = P2 + 0.2(0.2− 0.02t2)P2 = 5611.35
t4 = t3 + h = 0.8 P4 = P3 + 0.2(0.2− 0.02t3)P3 = 5822.3
t5 = t4 + h = 1.0 P5 = P4 + 0.2(0.2− 0.02t4)P4 = 6036.6
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Time-varying Population Model 3

Solution (cont): Verify that the solution is

P (t) = 5000 e0.2t−0.01t2

Compute the derivative
dP

dt
= 5000 e0.2t−0.01t2(0.2− 0.02 t)

However, (0.2− 0.02 t)P (t) = 5000 e0.2t−0.01t2(0.2− 0.02 t)
Thus, the differential equation is satisfied by the solution
that is given
At t = 1, P (1) = 6046.2
The percent error is

100× PEuler(1)− Pactual

Pactual(1)
=

100(6036.6− 6046.2)
6046.2

= −0.16%
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Time-varying Population Model 4

Solution (cont): Maximum of the population

The maximum is when the derivative is equal to zero
Because P (t) is positive, the derivative is zero (growth rate
falls to zero) when 0.2− 0.02 t = 0 or t = 10 years
This is substituted into the actual solution

P (10) = 5000 e1 = 13, 591.4
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Improved Euler’s Method 1

Improved Euler’s Method: There are many techniques to
improve the numerical solutions of differential equations

Euler’s Method is simple and intuitive, but lacks accuracy
Numerical methods are available through standard
software, like Maple or MatLab
Some of the best are a class of single step methods called
Runge-Kutta methods

The simplest of these is called the Improved Euler’s method
Showing why this technique is significantly better than
Euler’s method is beyond the scope of this course
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Improved Euler’s Method 2

Improved Euler’s Method Formula: This technique is an
easy extension of Euler’s Method

The Improved Euler’s method uses an average of the
Euler’s method and an Euler’s method approximation to
the function
Let y(t0) = y0 and define tn+1 = tn + h and the
approximation of y(tn) as yn

First approximate y by Euler’s method, so define

yen = yn + h f(tn, yn)

The Improved Euler’s formula starts with y(t0) = y0 and
becomes the discrete dynamical system

yn+1 = yn +
h

2
(f(tn, yn) + f(tn + h, yen))
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Example: Improved Euler’s Method 1

Example: Improved Euler’s Method: Consider the initial
value problem:

dy

dt
= y + t with y(0) = 3

The solution to this differential equation is

y(t) = 4 et − t− 1

Numerically solve this using Euler’s Method and Improved
Euler’s Method using h = 0.1
Compare these numerical solutions

Joseph M. Mahaffy, 〈mahaffy@math.sdsu.edu〉
Lecture Notes – Numerical Methods for Differen
— (38/41)

Introduction
Euler’s Method

Improved Euler’s Method
Example

Example: Improved Euler’s Method 2

Solution: Let y0 = 3, the Euler’s formula is

yn+1 = yn + h(yn + tn) = yn + 0.1(yn + tn)

The Improved Euler’s formula is

yen = yn + h(yn + tn) = yn + 0.1(yn + tn)

with

yn+1 = yn + h
2 ((yn + tn) + (yen + tn + h))

yn+1 = yn + 0.05 (yn + yen + 2 tn + 0.1)
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Solution: Below is a table of the numerical computations

t Euler’s Method Improved Euler Actual
0 y0 = 3 y0 = 3 y(0) = 3

0.1 y1 = 3.3 y1 = 3.32 y(0.1) = 3.3207
0.2 y2 = 3.64 y2 = 3.6841 y(0.2) = 3.6856
0.3 y3 = 4.024 y3 = 4.0969 y(0.3) = 4.0994
0.4 y4 = 4.4564 y4 = 4.5636 y(0.4) = 4.5673
0.5 y5 = 4.9420 y5 = 5.0898 y(0.5) = 5.0949
0.6 y6 = 5.4862 y6 = 5.6817 y(0.6) = 5.6885
0.7 y7 = 6.0949 y7 = 6.3463 y(0.7) = 6.3550
0.8 y8 = 6.7744 y8 = 7.0912 y(0.8) = 7.1022
0.9 y9 = 7.5318 y9 = 7.9247 y(0.9) = 7.9384
1 y10 = 8.3750 y10 = 8.8563 y(1) = 8.8731
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Example: Improved Euler’s Method 4

Solution: Comparison of the numerical simulations

It is very clear that the Improved Euler’s method does a
substantially better job of tracking the actual solution
The Improved Euler’s method requires only one additional
function, f(t, y), evaluation for this improved accuracy
At t = 1, the Euler’s method has a −5.6% error from the
actual solution
At t = 1, the Improved Euler’s method has a −0.19% error
from the actual solution
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