Outline

Calculus for the Life Sciences II Lecture Notes – Nonlinear Dynamical Systems		Discrete Logistic Growth Model Introduction			
Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego, CA 92182-7720 http://www-rohan.sdsu.edu/~jmahaffy		 Equilibria Simulation of Logistic Growth Model Stability of Logistic Growth Model 	 Yeast Study Discrete Dynamical Models Qualitative Analysis of Logistic Growth Model Equilibria Simulation of Logistic Growth Model Stability of Logistic Growth Model Behavior of Discrete Dynamical Models Examples of Logistic Growth U. S. Population Models 		
Fall		DSU	SDSU		
$\textbf{Joseph M. Mahaffy, } \langle \texttt{mahaffy@math.sdsu.edu} \rangle$	- (1/64)	Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)	— (2/64)		
Discrete Logistic Growth Model Qualitative Analysis of Logistic Growth Model Cobwebbing	Introduction Yeast Study Discrete Dynamical Models	Discrete Logistic Growth Model Qualitative Analysis of Logistic Growth Model Cobwebbing	Introduction Yeast Study Discrete Dynamical Models		
Introduction		Yeast Study	1		
		Growing Culture of Yeast: (Classic study by Carlson in 1913		

Discrete Growth Models

- The Discrete Malthusian growth model shows exponential growth
- Most animal populations grow exponentially soon after settling
- With population growth, crowding pressure decreases the growth rate
 - Space and resource limitation
 - Toxic build up

Growing Culture of Yeast: Classic study by Carlson in 1913

ſ	Time	Population	Time	Population	Time	Population
	1	9.6	7	174.6	13	594.8
	2	18.3	8	257.3	14	629.4
	3	29.0	9	350.7	15	640.8
	4	47.2	10	441.0	16	651.1
	5	71.1	11	513.3	17	655.9
	6	119.1	12	559.7	18	659.6

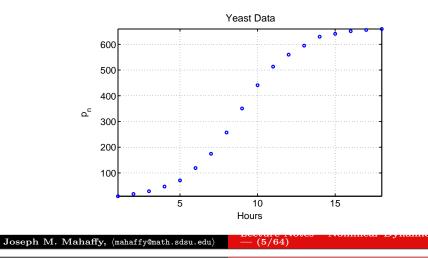
These data show a classic **S-shape curve**

 T. Carlson Über Geschwindigkeit und Grösse der Hefevermehrung in Würze. Biochem. Z. (1913) 57, 313–334

Introduction **Yeast Study** Discrete Dynamical Models

Yeast Study

Carlson (1913) Yeast data: Classic S-shape curve with initial accelerating growth, then eventually saturation



Discrete Logistic Growth Model Qualitative Analysis of Logistic Growth Model Cobwebbing Introduction Yeast Study Discrete Dynamical Models

Discrete Growth Models

Discrete Dynamical Model with Updating Function

A more general form satisfies

$$p_{n+1} = F(p_n)$$

- An iterative map the population at the $(n + 1)^{st}$ generation depends on the population at the n^{th} generation
- The function F(p) is called the **updating function**
- The graph of the updating function
 - The $(n+1)^{st}$ generation is on the vertical axis
 - The n^{th} generation is on the horizontal axis
 - Usually want **identity map** to find **equilibria**

5DSU

Discrete Logistic Growth Model Qualitative Analysis of Logistic Growth Model Cobwebbing Introduction Yeast Study Discrete Dynamical Models

Discrete Growth Models

2

SDSU

 $\mathbf{2}$

Discrete Dynamical Growth Model

There are two standard forms for **discrete population models**

One form uses a growth function, $G(p_n)$

$$p_{n+1} = p_n + G(p_n)$$

The population at the next time interval (n + 1) equals the population at the current time interval (n) plus the net growth of the current population, $G(p_n)$

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) – (6/64) Discrete Logistic Growth Model Qualitative Analysis of Logistic Growth Model Cobwebbing

Logistic Growth Model

Logistic Growth Model

- Malthusian growth uses a linear updating function and grows exponentially without bound
- Most populations have a decreasing growth rate due to crowding effects
- Easiest form is to insert a quadratic term (negative) to the updating function
- This is the Logistic Growth model

$$p_{n+1} = p_n + rp_n \left(1 - \frac{p_n}{M}\right)$$

- This equation has the Malthusian growth model with the additional term $-rp_n^2/M$
- The parameter *M* is called the **carrying capacity** of the population

Introduction Yeast Study Discrete Dynamical Models

Logistic Growth Model

Behavior of the Logistic Growth Model

- The Logistic growth model shows complicated dynamics shown by ecologist May (1974)
- There is **no exact solution** to this discrete dynamical system
- Given the Logistic Growth model

$p_{n+1} = p_n + rp_n \left(1 - \frac{p_n}{M}\right)$

- There are **equilibria** at 0 and M
- The parameter r has restricted values (r < 3) with more complex behavior for higher values of r
- Numerous applets available on the web to view behavior

-(9/64)

Discrete Logistic Growth Model Qualitative Analysis of Logistic Growth Model Cobwebbing

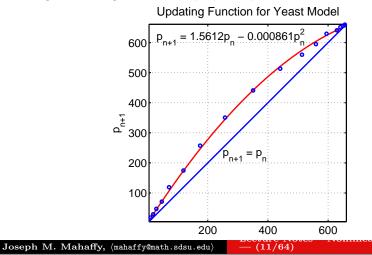
 $\textbf{Joseph M. Mahaffy}, \ \langle \texttt{mahaffy}\texttt{@math.sdsu.edu} \rangle$

Introduction Yeast Study Discrete Dynamical Models

Yeast Study

Updating Function: Graph of best fitting **quadratic**

through the origin of data, p_{n+1} vs p_n , and the identity function



Discrete Logistic Growth Model Qualitative Analysis of Logistic Growth Model Cobwebbing Introduction Yeast Study Discrete Dynamical Models

Yeast Study

2

2

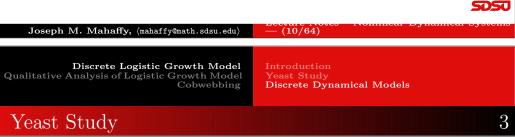
5050

Logistic Growth Model for Carlson Yeast Study

• Logistic Growth model has form

$$p_{n+1} = p_n + rp_n \left(1 - \frac{p_n}{M}\right)$$

- Use successive data values to obtain p_{n+1} and p_n
- The first two points are (9.6, 18.3) and (18.3, 29.0) with others found similarly
- The graph of the data is fit with the best quadratic passing through the origin



• Recall the **logistic growth model** has the form

$$p_{n+1} = p_n + rp_n \left(1 - \frac{p_n}{M}\right)$$

• The best fitting model to the yeast data is

$$p_{n+1} = 1.5612 \, p_n - 0.000861 \, p_n^2$$

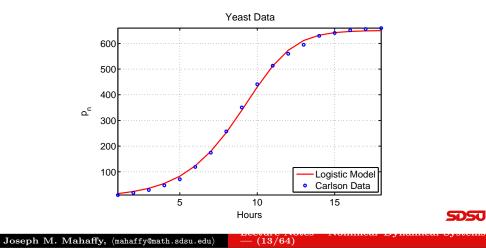
• It follows that r = 0.5612 and M = 650.4

5**D**50

Introduction Yeast Study Discrete Dynamical Models

Yeast Study

Simulation: The model is easily simulated and by varying the initial population to $p_1 = 15.0$, a best fit to the data is found



Discrete Logistic Growth Model Qualitative Analysis of Logistic Growth Model Cobwebbing Equilibria Simulation of Logistic Growth Model Stability of Logistic Growth Model Behavior of Discrete Dynamical Models Examples of Logistic Growth U. S. Population Models

Equilibria for Logistic Growth Model

Consider the logistic growth model:

$$p_{n+1} = p_n + rp_n \left(1 - \frac{p_n}{M}\right)$$

If r > 0, then equilibria satisfy

$$p_e = p_e + rp_e \left(1 - \frac{p_e}{M}\right)$$
$$rp_e \left(1 - \frac{p_e}{M}\right) = 0$$

Thus, $p_e = 0$ or $p_e = M$

The equilibria for the Logistic growth model are either

- The trivial solution $p_e = 0$ (no population) or
- The carrying capacity $p_e = M$

Discrete Logistic Growth Model Qualitative Analysis of Logistic Growth Model Cobwebbing Equilibria Simulation of Logistic Growth Model Stability of Logistic Growth Model Behavior of Discrete Dynamical Models Examples of Logistic Growth U. S. Population Models

Equilibria

4

5050

Consider the general discrete dynamical model:

$$p_{n+1} = F(p_n)$$

Study the qualitative behavior of discrete dynamical equations

- The first step in any analysis is finding equilibria
- This is simply an **algebraic equation**
- An equilibrium point of a discrete dynamical system is where there is no change in the variable from one iteration to the next
- Mathematically, $p_e = F(p_e)$
- Geometrically, this is when F(p) crosses the identity map_____

Joseph M. Mahaffy, $\langle mahaffy@math.sdsu.edu \rangle = (14/64)$

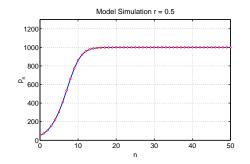
Discrete Logistic Growth Model Qualitative Analysis of Logistic Growth Model Cobwebbing Equilibria Simulation of Logistic Growth Model Stability of Logistic Growth Model Behavior of Discrete Dynamical Models Examples of Logistic Growth U. S. Population Models

Logistic Growth Model Simulation

Consider the logistic growth model:

$$p_{n+1} = p_n + rp_n \left(1 - \frac{p_n}{M}\right)$$

Let
$$p_0 = 50$$
, $M = 1000$, and $r = 0.5$



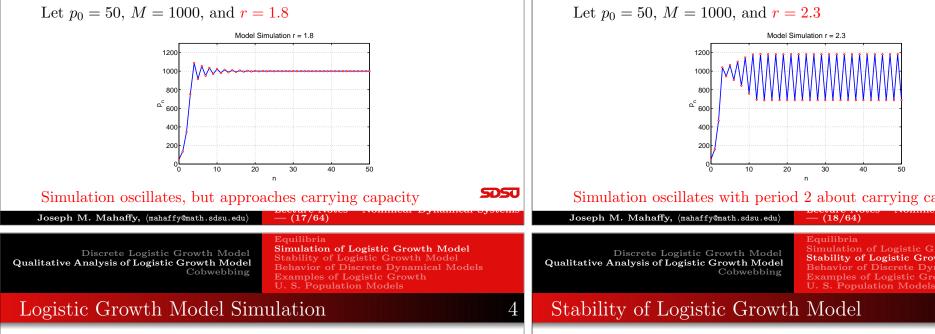
Simulation monotonically approaches carrying capacity Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) — (16/64)

Simulation of Logistic Growth Model Stability of Logistic Growth Model Behavior of Discrete Dynamical Models Examples of Logistic Growth

Logistic Growth Model Simulation

Consider the logistic growth model:

$$p_{n+1} = p_n + rp_n \left(1 - \frac{p_n}{M}\right)$$

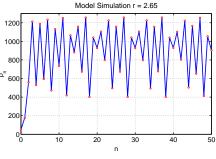


2

Consider the logistic growth model:

$$p_{n+1} = p_n + rp_n \left(1 - \frac{p_n}{M}\right)$$

Let $p_0 = 50$, M = 1000, and r = 2.65



Simulation is chaotic with unpredictable results $\textbf{Joseph M. Mahaffy}, \ \langle \texttt{mahaffy}\texttt{@math.sdsu.edu} \rangle$ (19/64)

SD-SU

Discrete Logistic Growth Model Qualitative Analysis of Logistic Growth Model

Equilibria Simulation of Logistic Growth Model Stability of Logistic Growth Model Behavior of Discrete Dynamical Models Examples of Logistic Growth U. S. Population Models

3

SDSU

Logistic Growth Model Simulation

Consider the logistic growth model:

$$p_{n+1} = p_n + rp_n \left(1 - \frac{p_n}{M}\right)$$

Simulation oscillates with period 2 about carrying capacity

Simulation of Logistic Growth Model Stability of Logistic Growth Model Behavior of Discrete Dynamical Models

Stability of Logistic Growth Model

- Equilibria are easy to find, but behavior of the model varies dramatically as shown by simulations above
- There are mathematical tools that help predict some of these behaviors
- The discrete logistic growth model is

$$p_{n+1} = f(p_n) = p_n + rp_n \left(1 - \frac{p_n}{M}\right)$$

• The derivative of the function f(p) is valuable for determining the behavior of the discrete dynamical system near an equilibrium point

505t

Equilibria Simulation of Logistic Growth Model Stability of Logistic Growth Model Behavior of Discrete Dynamical Models Examples of Logistic Growth U. S. Population Models

Stability of Logistic Growth Model

• The **Equilibria** are

$$p_e = 0$$
 and $p_e = M$

• The **derivative** of $f(p) = (1+r)p - rp^2/M$ is

$$f'(p) = 1 + r - \frac{2rp}{M}$$

• Evaluation of the derivative at the equilibria gives some information about the **behavior of the discrete dynamical model**

SDSU

2

Discrete Logistic Growth Model Qualitative Analysis of Logistic Growth Model Cobwebbing

Equilibria Simulation of Logistic Growth Model Stability of Logistic Growth Model Behavior of Discrete Dynamical Models Examples of Logistic Growth U. S. Population Models

Stability of Logistic Growth Model

Consider the **Trivial Equilibrium**, $p_e = 0$

• Since the **derivative** is

$$f'(p) = 1 + r - \frac{2rp}{M}$$

• At $p_e = 0$, the derivative satisfies

f'(0) = 1 + r

- r positive always results in solutions growing away from this equilibrium
- When the population is small, there are plenty of resources and the population grows (exponentially)
- Near $p_e = 0$ solutions behave like Malthusian growth

SDSU

3

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) -(21/64) $\textbf{Joseph M. Mahaffy}, \ \langle \texttt{mahaffy}\texttt{@math.sdsu.edu} \rangle$ -(22/64)Simulation of Logistic Growth Model Discrete Logistic Growth Model Discrete Logistic Growth Model Stability of Logistic Growth Model Qualitative Analysis of Logistic Growth Model Qualitative Analysis of Logistic Growth Model Behavior of Discrete Dynamical Models Behavior of Discrete Dynamical Models Cobwebbing Cobwebbing **U. S. Population Models** Stability of Logistic Growth Model Behavior of Discrete Dynamical Models 4 • If $f'(p_e) > 1$ Consider the Carrying Capacity Equilibrium, $p_e = M$ • Solutions of the discrete dynamical model grow away from the equilibrium (monotonically) • Since the **derivative** is • The equilibrium is unstable • If $0 < f'(p_e) < 1$ $f'(p) = 1 + r - \frac{2rp}{M}$ • Solutions of the discrete dynamical model approach the equilibrium (monotonically) • The equilibrium is stable • At $p_e = M$, the derivative satisfies • If $-1 < f'(p_e) < 0$ • Solutions of the discrete dynamical model oscillate about f'(M) = 1 - rthe equilibrium and approach it • The equilibrium is stable • There are several possible behaviors of the solution near • If $f'(p_e) < -1$ the carrying capacity equilibrium

5050

- Solutions of the discrete dynamical model oscillate about the equilibrium but move away from it
- The equilibrium is unstable

Joseph M. Mahaffy, $\langle mahaffy@math.sdsu.edu \rangle = (24/64)$

Qualitative Analysis of Logistic Growth Model Cobwebbing Behavior of Discrete Dynamical Models Examples of Logistic Growth U. S. Population Models

Behavior of the Logistic Growth Model

Discrete Logistic Growth Model Qualitative Analysis of Logistic Growth Model

Equilibria Stability of Logistic Growth Model Examples of Logistic Growth U. S. Population Model

Behavior of Logistic Growth Model near $p_e = M$

- If 0 < r < 1, then the solution of the discrete logistic model monotonically approaches the equilibrium, $p_e = M$, which was observed for the experiment with the yeast
- If 1 < r < 2, then the solution of the discrete logistic model oscillates about the equilibrium, $p_e = M$, but the solution asymptotically approaches this equilibrium
- If 2 < r < 3, then the solution of the discrete logistic model oscillates about the equilibrium, $p_e = M$, but the solution grows away from this equilibrium
- r > 3 results in negative solutions

Example 1 of the Logistic Growth Model

Example 1: Consider the discrete logistic growth model

$$p_{n+1} = f_1(p_n) = 1.3 p_n - 0.0001 p_n^2$$

Skip Example

- Find all the equilibria for this model
- Determine the behavior of the solution near these equilibria
- Sketch a graph of the updating function and the identity map $p_{n+1} = p_n$
- Simulate the model, starting $p_0 = 100$ for 50 iterations

SDSU	SDSU		
Joseph M. Mahaffy, $\langle mahaffy@math.sdsu.edu \rangle$ — (25/64)	Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) $-(26/64)$		
Discrete Logistic Growth Model Qualitative Analysis of Logistic Growth Model Cobwebbing Discrete Logistic Growth Model Cobwebbing Co	Discrete Logistic Growth Model Qualitative Analysis of Logistic Growth Model Cobwebbing Discrete Dynamical Models Examples of Logistic Growth U. S. Population Models		
Example 1 of the Logistic Growth Model 2	Example 1 of the Logistic Growth Model 3		
Solution: For the discrete logistic growth model $p_{n+1} = 1.3 p_n - 0.0001 p_n^2$	Solution (cont): For $f_1(p) = 1.3 p - 0.0001 p^2$, the derivative satisfies		
the equilibria are found by substituting $p_e = p_n = p_{n+1}$ Thus,	At $p_e = 0$ $f'_1(p) = 1.3 - 0.0002 p$ $f'_1(0) = 1.3 > 1$		
$p_e = 1.3 p_e - 0.0001 p_e^2$ $0 = 0.3 p_e - 0.0001 p_e^2 = p_e (0.3 - 0.0001 p_e)$	The solution monotonically grows away from this equilibrium, as expected		
The equilibria satisfy	At $p_e = 3000$		
$p_e = 0$	$f_1'(3000) = 1.3 - 0.6 = 0.7 < 1$		
and $0.3 - 0.0001 p_e = 0$ or $p_e = 3000$	The solution monotonically approaches this equilibrium		

Joseph M. Mahaffy, $\langle mahaffy@math.sdsu.edu \rangle$ (27/64) 505t

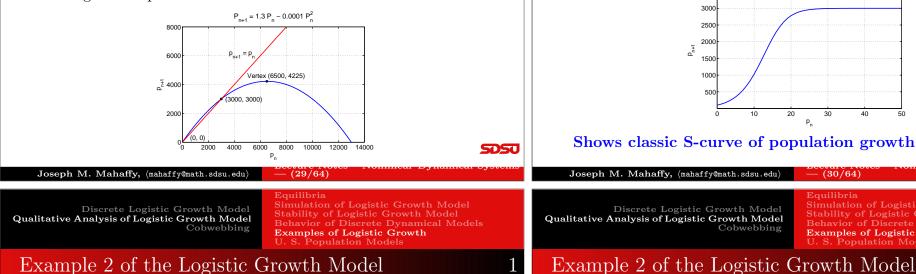
This equilibrium is **stable**

Equilibria Stability of Logistic Growth Model Behavior of Discrete Dynamical Models Examples of Logistic Growth U. S. Population Model

Example 1 of the Logistic Growth Model

Graphing the updating function

- The *p*-intercepts are 0 and 13,000
- The vertex is at (6500, 4225)
- Below is graph of updating function and identity map with significant points



Example 2: Consider the discrete logistic growth model

$$p_{n+1} = f_2(p_n) = 2.7 \, p_n - 0.0001 \, p_n^2$$

- Find all the equilibria for this model
- Determine the behavior of the solution near these equilibria
- Sketch a graph of the updating function and the identity map $p_{n+1} = p_n$
- Simulate the model, starting $p_0 = 100$ for 50 iterations

Discrete Logistic Growth Model Qualitative Analysis of Logistic Growth Model

Equilibria Stability of Logistic Growth Model **Examples of Logistic Growth** U. S. Population Mode

5

SDSU

 $\mathbf{2}$

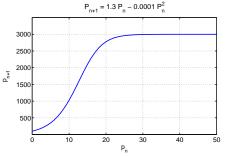
Example 1 of the Logistic Growth Model

Simulation of

4

$$p_{n+1} = 1.3 \, p_n - 0.0001 \, p_n$$

with $p_0 = 100$ for 50 iterations



Simulation of Logistic Growth Model Stability of Logistic Growth Model Behavior of Discrete Dynamical Models Examples of Logistic Growth U. S. Population Models

Example 2 of the Logistic Growth Model

Solution: For the discrete logistic growth model

$$p_{n+1} = 2.7 \, p_n - 0.0001 \, p_n^2$$

the equilibria are found by substituting $p_e = p_n = p_{n+1}$ Thus,

$$p_e = 2.7 p_e - 0.0001 p_e^2$$

$$0 = 1.7 p_e - 0.0001 p_e^2 = p_e (1.7 - 0.0001 p_e)$$

The equilibria satisfy

$$p_e = 0$$

and

5050

 $1.7 - 0.0001 \, p_e = 0$ or $p_e = 17,000$

Equilibria Simulation of Logistic Growth Model Stability of Logistic Growth Model Behavior of Discrete Dynamical Mode Examples of Logistic Growth U. S. Population Models

3

Example 2 of the Logistic Growth Model

Solution (cont): For $f_2(p) = 2.7 p - 0.0001 p^2$, the derivative satisfies

$$f_2'(p) = 2.7 - 0.0002 \, p$$

At $p_e = 0$

 $f_2'(0) = 2.7 > 1$

The solution monotonically grows away from this equilibrium, as expected

At $p_e = 17,000$

 $f_2'(17,000) = 2.7 - 3.4 = -0.7$

Since $-1 < f'_2(17,000) < 0$, the solution oscillates and approaches this equilibrium This equilibrium is also **stable**

Discrete Logistic Growth Model

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

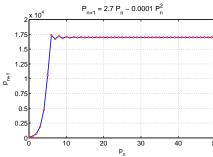
Qualitative Analysis of Logistic Growth Model Cobwebbing

Example 2 of the Logistic Growth Model

Simulation of

$$p_{n+1} = 2.7 \, p_n - 0.0001 \, p_n$$

with $p_0 = 100$ for 50 iterations



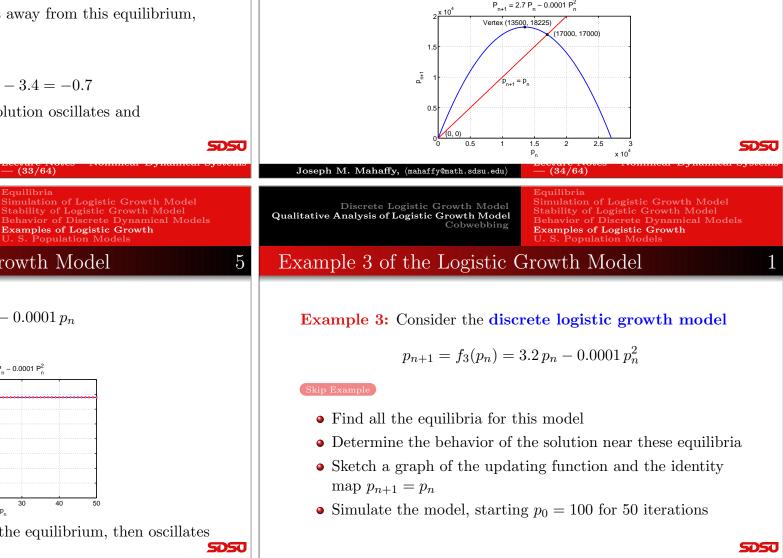
Simulation grows and overshoots the equilibrium, then oscillates toward the equilibrium

Discrete Logistic Growth Model Qualitative Analysis of Logistic Growth Model Cobwebbing Equilibria Simulation of Logistic Growth Model Stability of Logistic Growth Model Behavior of Discrete Dynamical Models **Examples of Logistic Growth** U. S. Population Models

Example 2 of the Logistic Growth Model

Graphing the updating function

- The *p*-intercepts are 0 and 27,000
- The vertex is at (13500, 18225)
- Below is graph of updating function and identity map with significant points



Example 3 of the Logistic Growth Model

Solution: For the discrete logistic growth model

 $p_{n+1} = 3.2 \, p_n - 0.0001 \, p_n^2$

Equilibria

Stability of Logistic Growth Model

Examples of Logistic Growth

U. S. Population Model

the equilibria are found by substituting $p_e = p_n = p_{n+1}$

Thus,

$$p_e = 3.2 p_e - 0.0001 p_e^2$$

$$0 = 2.2 p_e - 0.0001 p_e^2 = p_e (2.2 - 0.0001 p_e)$$

The equilibria satisfy

 $p_e = 0$

and

$$2.2 - 0.0001 \, p_e = 0$$
 or $p_e = 22,000$

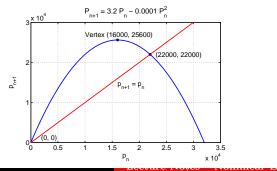
U. S. Population Models

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) Discrete Logistic Growth Model Qualitative Analysis of Logistic Growth Model Cobwebbing

Example 3 of the Logistic Growth Model

Graphing the updating function

- The *p*-intercepts are 0 and 32,000
- The vertex is at (16000, 25600)
- Below is graph of updating function and identity map with significant points



Discrete Logistic Growth Model Qualitative Analysis of Logistic Growth Model Cobwebbing Equilibria Simulation of Logistic Growth Model Stability of Logistic Growth Model Behavior of Discrete Dynamical Models Examples of Logistic Growth U. S. Population Models

3

SDSU

5

Example 3 of the Logistic Growth Model

Solution (cont): For $f_3(p) = 3.2 p - 0.0001 p^2$, the derivative satisfies

$$f_3'(p) = 3.2 - 0.0002 \, p$$

At $p_e = 0$

2

SDSU

4

5050

 $f'_3(0) = 3.2 > 1$

The solution monotonically grows away from this equilibrium, as expected

At $p_e = 22,000$

$$f_3'(22,000) = 3.2 - 4.4 = -1.2 < -1$$

The solution oscillates away from this equilibrium This equilibrium is **unstable**

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) (38/64)

```
Discrete Logistic Growth Model
Qualitative Analysis of Logistic Growth Model
Cobwebbing
```

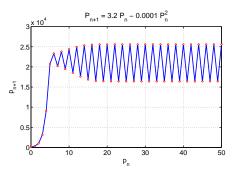
Simulation of Logistic Growth Model Stability of Logistic Growth Model Behavior of Discrete Dynamical Models Examples of Logistic Growth U. S. Population Models

Example 3 of the Logistic Growth Model

Simulation of

$$p_{n+1} = 3.2 \, p_n - 0.0001 \, p_n$$

with $p_0 = 100$ for 50 iterations



Simulation oscillates about the carrying capacity with period 2 behavior

Joseph M. Mahaffy, $\langle mahaffy@math.sdsu.edu \rangle = (40/64)$

Equilibria Simulation of Logistic Growth Model Stability of Logistic Growth Model Behavior of Discrete Dynamical Models **Examples of Logistic Growth** U. S. Ponulation Models

Example 4 - Logistic Growth with Emigration

Logistic Growth with Emigration - Population growth may be affected by immigration or emigration

Skip Example

Consider the discrete dynamical population model

 $p_{n+1} = p_n + g(p_n) = 1.71 \, p_n - 0.001 \, p_n^2 - 7,$

where n is measured in generations

- This model has a 71% growth rate per generation
- Logistic crowding effects are given by the term $0.001 p_n^2$
- 7 individuals emigrate each generation

Discrete Logistic Growth Model Qualitative Analysis of Logistic Growth Model Cobwebbing Equilibria Simulation of Logistic Growth Model Stability of Logistic Growth Model Behavior of Discrete Dynamical Models **Examples of Logistic Growth** U. S. Population Models

2

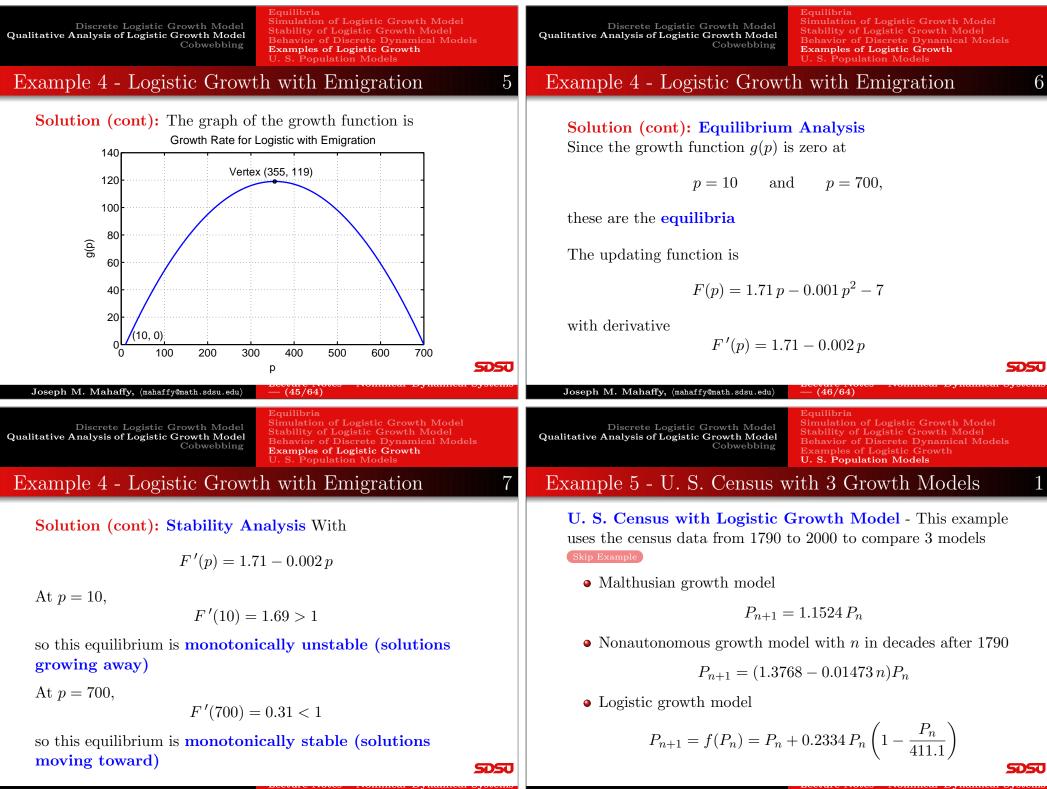
Example 4 - Logistic Growth with Emigration

Logistic Growth with Emigration

$$p_{n+1} = p_n + g(p_n) = 1.71 \, p_n - 0.001 \, p_n^2 - 7,$$

- Let $p_0 = 100$ and find the population for the next 3 generations
- Find the *p*-intercepts and the vertex for g(p) and graph of g(p)
- By finding when the growth rate is zero, determine all equilibria for this model and analyze their stability

SDSU	SDSO		
Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) - (41/64)	Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) $-(42/64)$		
Discrete Logistic Growth Model Qualitative Analysis of Logistic Growth Model Cobwebbing Discrete Logistic Growth Model Cobwebbing Cobwebbing	Discrete Logistic Growth Model Qualitative Analysis of Logistic Growth Model Cobwebbing Discrete Dynamical Models Examples of Logistic Growth U. S. Population Models		
Example 4 - Logistic Growth with Emigration 3	Example 4 - Logistic Growth with Emigration 4		
	Solution (cont): The growth function satisfies		
Solution: We begin with $p_0 = 100$ $p_1 = p_0 + g(p_0) = 100 + 0.71(100) - 0.001(100)^2 - 7 = 154,$ $p_2 = 154 + 0.71(154) - 0.001(154)^2 - 7 = 233,$ $p_3 = 233 + 0.71(233) - 0.001(233)^2 - 7 = 337.$	$g(p) = 0.71p - 0.001p^{2} - 7$ $g(p) = -0.001(p^{2} - 710p + 7000)$ $g(p) = -0.001(p - 10)(p - 700)$ The <i>p</i> -intercepts are $p = 10 \text{or} p = 700$ The vertex satisfies $p = 355$ with $g(355) = -0.001(345)(-345) = 119$		



Equilibria Simulation of Logistic Growth Model Stability of Logistic Growth Model Behavior of Discrete Dynamical Models Examples of Logistic Growth U. S. Population Models

2

SDSU

4

Example 5 - U. S. Census with 3 Growth Models

Malthusian growth model

 $P_{n+1} = (1+r)P_n \quad \text{with} \quad P_0$

• Least squares best fit to census data

 $P_n = P_0(1+r)^n = 15.05(1.1524)^n$

- The average growth over U. S. census history is r = 0.1524 per decade with best $P_0 = 15.05$ M
 - The sum of square errors is 2248
 - The P_0 is quite high and growth only matches growth near beginning of 20^{th} century

U. S. Population Models

• Malthusian model isn't expected to work well over long periods of time

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) Discrete Logistic Growth Model Qualitative Analysis of Logistic Growth Model Cobwebbing

Example 5 - U. S. Census with 3 Growth Models

Logistic growth model

$$P_{n+1} = P_n + rP_n \left(1 - \frac{P_n}{M}\right) \quad \text{with} \quad P_0$$

• Least squares best fit to census data

$$P_{n+1} = P_n + 0.2334 P_n \left(1 - \frac{P_n}{411.1} \right)$$

- This gives a growth rate of r = 0.2334 and carrying capacity of M = 411.1 with the best $P_0 = 8.04$
 - The sum of square errors is 479
 - The P_0 is high at 8.04 M
- This model matches the census data best of the 3 models **SDSU**

Discrete Logistic Growth Model Qualitative Analysis of Logistic Growth Model Cobwebbing Equilibria Simulation of Logistic Growth Model Stability of Logistic Growth Model Behavior of Discrete Dynamical Models Examples of Logistic Growth U. S. Population Models

3

SDSU

5

Example 5 - U. S. Census with 3 Growth Models

Nonautonomous growth model

$$P_{n+1} = (1 + k(t_n))P_n \quad \text{with} \quad P_0$$

• Best linear fit to growth over U. S. history is

 $k(t_n) = 0.3768 - 0.01473 \, n$

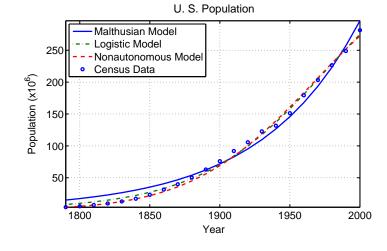
- Growth near 38% per decade early, declining about 1.5% per decade
- Least squares best fit to census data had $P_0 = 3.77$ M
 - The sum of square errors is 543
 - The P_0 is very close to actual 1790 census
- This model matches the census quite well, but model difficult to analyze mathematically

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) (50/64)

Discrete Logistic Growth Model Qualitative Analysis of Logistic Growth Model Cobwebbing Simulation of Logistic Growth Model Stability of Logistic Growth Model Behavior of Discrete Dynamical Models Examples of Logistic Growth U. S. Population Models

Example 5 - U. S. Census with 3 Growth Models

Graph of the 3 models and U.S. census data



Simulation of Logistic Growth Model Stability of Logistic Growth Model Examples of Logistic Growth U. S. Population Models

Example 5 - U. S. Census with 3 Growth Models

Logistic Updating Function

- Direct fitting of the logistic time series to data can be numerically unstable
- Finding the quadratic updating function uses stable numerical routines
- compares to the updating function for the logistic growth model
- Find P_n and P_{n+1} by taking successive pairs of census data

Simulation of Logistic Growth Model Discrete Logistic Growth Model Qualitative Analysis of Logistic Growth Model Behavior of Discrete Dynamical Models Cobwebbing U.S. Population Models

Example 5 - U. S. Census with 3 Growth Models

Logistic Updating function for U.S. census data

- The logistic updating function very closely follows the census data except at a couple of points
- The equilibria occur at the intersection of the updating function and the identity map
- The slope of the updating function at a point of intersection determines the stability of that equilibrium

(55/64)

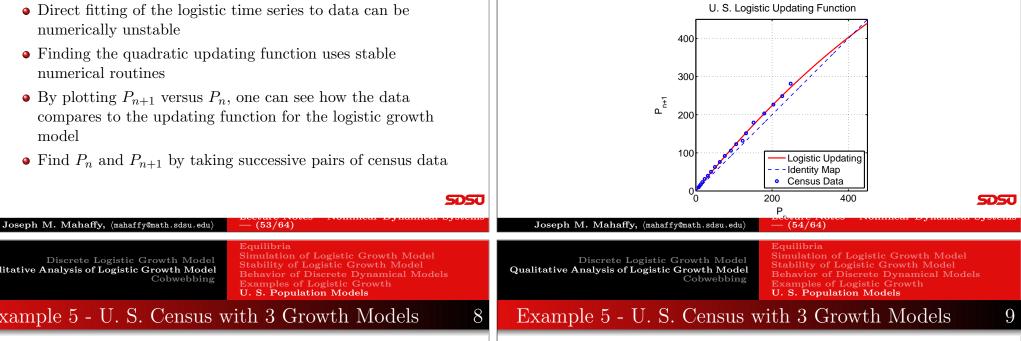
Discrete Logistic Growth Model Qualitative Analysis of Logistic Growth Model Cobwebbing

Equilibria Simulation of Logistic Growth Model Stability of Logistic Growth Model Behavior of Discrete Dynamical Models Examples of Logistic Growth U. S. Population Models

Example 5 - U. S. Census with 3 Growth Models

Graph of the Logistic Updating function

Graph shows U. S. census data, quadratic for logistic model, and identity map



6

Logistic Updating function for U.S. census data

$$f(P_n) = P_n + 0.2334 P_n \left(1 - \frac{P_n}{411.1} \right) = 1.2334 P_n - 0.00056775 P_n^2$$

The **equilibria** satisfy

$$P_{e} = P_{e} + 0.2334 P_{e} \left(1 - \frac{P_{e}}{411.1} \right)$$
$$0 = 0.2334 P_{e} \left(1 - \frac{P_{e}}{411.1} \right)$$

The equilibria are

5050

$$P_e = 0 \qquad \text{and} \qquad P_e = 411.1$$

Simulation of Logistic Growth Model Stability of Logistic Growth Model Examples of Logistic Growth U. S. Population Models

Example 5 - U. S. Census with 3 Growth Models

Updating Function

 $f(P) = 1.2334 P - 0.00056775 P^2$

The derivative of the updating function is

$$f'(P) = 1.2334 - 0.0011355 P$$

At the equilibrium, $P_e = 0$,

f'(0) = 1.2334 > 1

This equilibrium is **unstable** with solutions monotonically moving away

SDSU

10

Summary: Future Projections

- The Malthusian growth model is simple but simulates poorly for the entire history of the U.S.
- Nonautonomous growth model
 - Simulates historical data well, but low by 3.2% in 2000 and 5.8% in 2010
 - Fails to account for recent immigration and high birth rates in immigrant community
 - Model predicts population increases to a maximum of 330 M around 2050, then declines
- Logistic growth model
 - Simulates historical data well, but low by 2.3% in 2000 and 4.0% in 2010 missing importance of recent immigration
 - Model predicts population increases to carrying capacity of 411.1 M, asymptotically 5050

Discrete Logistic Growth Model Qualitative Analysis of Logistic Growth Model Cobwebbing

Simulation of Logistic Growth Model Stability of Logistic Growth Model Behavior of Discrete Dynamical Models Examples of Logistic Growth U. S. Population Models

Example 5 - U. S. Census with 3 Growth Models 11

Since the **derivative of the updating function** is

$$f'(P) = 1.2334 - 0.0011355 P$$

At the equilibrium, $P_e = 411.1$,

$$f'(411.1) = 0.7666 < 1$$

This equilibrium is **stable** with solutions monotonically approaching the **carrying capacity**

Cobwebbing

Consider the discrete dynamical model

$$p_{n+1} = f(p_n)$$

In the Linear Discrete Dynamical Model section, we showed a graphical method to view the local dynamics of this model called **cobwebbing**

Create a graph with the variable p_{n+1} on the vertical axis and p_n on the horizontal axis

Draw the graph of the **updating function**, $f(p_n)$ and the identity map

$$p_{n+1} = f(p_n) \qquad \text{and} \qquad p_{n+1} = p_n$$

5050

2

Cobwebbing

Graphically, any intersection of the **updating function** and the **identity map**

$$p_{n+1} = f(p_n) \qquad \text{and} \qquad p_{n+1} = p_n$$

produces an equilibrium

- The process of **cobwebbing** shows the dynamics of this discrete dynamical model
- Start at some point p₀ on the horizontal axis, then go vertically to f(p₀) to find p₁
- Next go horizontally to the line $p_{n+1} = p_n$
- Go vertically to $f(p_1)$ to find p_2
- The process is repeated to give a geometric interpretation of the dynamics of the discrete model

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) ______ (61/64)

Discrete Logistic Growth Model Qualitative Analysis of Logistic Growth Model Cobwebbing

Cobwebbing – Quadratic Example

Cobwebbing – Quadratic Example

- Breathing model has a simple linear updating function
 - Unique equilibrium
 - Monotonic dynamics
- Quadratic updating function allows complicated dynamics
 - Logistic growth model is a quadratic dynamical model
 - Have observed monotonic, oscillatory, and chaotic dynamics
 - Show oscillatory dynamics for

$$p_{n+1} = 3 p_n (1 - p_n)$$

using a few steps of cobwebbing

• This example has equilibria at 0 and $\frac{2}{3}$, the latter being between stable and unstable and oscillatory

Cobwebbing – Breathing Model Example

The model for a normal subject breathing an air mixture enriched with Ar satisfies the model

$$c_{n+1} = (1-q)c_n + q\gamma = 0.82 c_n + 0.0017$$

Below reviews the cobwebbing process for this example

