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Normal reading is 120/80 (in mm of Hg)

How are those numbers generated and what can we infer
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Blood Pressure is divided into systolic and diastolic
pressure

Normal reading is 120/80 (in mm of Hg)

How are those numbers generated and what can we infer
from them?

The numbers for blood pressure reflect the force on arterial
walls

This pressure is generated by the beating of the heart
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Pulmonary circulation

Blood flows from the body into the right atrium
Flows to the right ventricle
Blood goes through the pulmonary artery to the lungs
Blood exchanges O2 and CO2 in the lungs
Blood returns through the pulmonary vein to the left atrium
Pressure in the pulmonary vein and left atrium is between 5
and 15 mm of Hg

Blood flows into the left ventricle

The heart is rigid, so pressure increases only slightly

The right atrium contracts, then the AV valve between the
atrium and the ventricle closes
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Cardiac Cycle (cont)

The heart receives an electrical signal, which causes ventricular
contraction, beginning systole

The left ventricle contracts, and the pressure increases until it
“blows” open the aortic valve
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(systolic pressure)
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Cardiac Cycle (cont)

The heart receives an electrical signal, which causes ventricular
contraction, beginning systole

The left ventricle contracts, and the pressure increases until it
“blows” open the aortic valve

Blood rapidly flows into the aorta under this high pressure
(systolic pressure)

As pressure rises in the aorta, the AV valve reopens, while the
aortic valve closes
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Cardiac Cycle (cont)

The heart receives an electrical signal, which causes ventricular
contraction, beginning systole

The left ventricle contracts, and the pressure increases until it
“blows” open the aortic valve

Blood rapidly flows into the aorta under this high pressure
(systolic pressure)

As pressure rises in the aorta, the AV valve reopens, while the
aortic valve closes

Now there is high pressure in the aorta, which forces the blood
into the other arteries of the body
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Cardiac Cycle 2

Cardiac Cycle (cont)

The heart receives an electrical signal, which causes ventricular
contraction, beginning systole

The left ventricle contracts, and the pressure increases until it
“blows” open the aortic valve

Blood rapidly flows into the aorta under this high pressure
(systolic pressure)

As pressure rises in the aorta, the AV valve reopens, while the
aortic valve closes

Now there is high pressure in the aorta, which forces the blood
into the other arteries of the body

As the blood flows through the body, the aortic pressure drops
to its low pressure, the diastolic pressure
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Cardiac Cycle 2

Cardiac Cycle (cont)

The heart receives an electrical signal, which causes ventricular
contraction, beginning systole

The left ventricle contracts, and the pressure increases until it
“blows” open the aortic valve

Blood rapidly flows into the aorta under this high pressure
(systolic pressure)

As pressure rises in the aorta, the AV valve reopens, while the
aortic valve closes

Now there is high pressure in the aorta, which forces the blood
into the other arteries of the body

As the blood flows through the body, the aortic pressure drops
to its low pressure, the diastolic pressure
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Arterial Blood Pressure 1

Arterial Blood Pressure: Model the arterial pressure, Pa(t),
during a single beat of the heart

Determine the important modeling parameters in the system

The cardiac output, Q, represents the average amount of blood
pumped by the heart (in liters/min)
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Arterial Blood Pressure: Model the arterial pressure, Pa(t),
during a single beat of the heart

Determine the important modeling parameters in the system

The cardiac output, Q, represents the average amount of blood
pumped by the heart (in liters/min)

The stroke volume, V , is the amount of blood pumped by the
heart during one beat (liters/beat)

T is the duration of a heart beat
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Arterial Blood Pressure 1

Arterial Blood Pressure: Model the arterial pressure, Pa(t),
during a single beat of the heart

Determine the important modeling parameters in the system

The cardiac output, Q, represents the average amount of blood
pumped by the heart (in liters/min)

The stroke volume, V , is the amount of blood pumped by the
heart during one beat (liters/beat)

T is the duration of a heart beat

Relate flow from the cardiac output to the stroke volume by the
relationship

Cardiac Output = Stroke Volume / Duration of the Flow

Q = V/T (liters/min)
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Arterial Blood Pressure: Model the arterial pressure, Pa(t),
during a single beat of the heart

Determine the important modeling parameters in the system

The cardiac output, Q, represents the average amount of blood
pumped by the heart (in liters/min)

The stroke volume, V , is the amount of blood pumped by the
heart during one beat (liters/beat)

T is the duration of a heart beat

Relate flow from the cardiac output to the stroke volume by the
relationship

Cardiac Output = Stroke Volume / Duration of the Flow

Q = V/T (liters/min)
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Arterial Blood Pressure:

The left ventricle completes pumping the blood into the
aorta and the aortic valve closes at the maximum pressure,
Psys
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Arterial Blood Pressure:

The left ventricle completes pumping the blood into the
aorta and the aortic valve closes at the maximum pressure,
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The blood pressure begins to fall as the blood flows
through the arteries
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Arterial Blood Pressure:

The left ventricle completes pumping the blood into the
aorta and the aortic valve closes at the maximum pressure,
Psys

The blood pressure begins to fall as the blood flows
through the arteries

The rate of flowing of the blood depends on the resistance
of a blood vessel
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Arterial Blood Pressure 2

Arterial Blood Pressure:

The left ventricle completes pumping the blood into the
aorta and the aortic valve closes at the maximum pressure,
Psys

The blood pressure begins to fall as the blood flows
through the arteries

The rate of flowing of the blood depends on the resistance
of a blood vessel

Viscosity of the blood
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Arterial Blood Pressure:

The left ventricle completes pumping the blood into the
aorta and the aortic valve closes at the maximum pressure,
Psys

The blood pressure begins to fall as the blood flows
through the arteries

The rate of flowing of the blood depends on the resistance
of a blood vessel

Viscosity of the blood
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Arterial Blood Pressure 2

Arterial Blood Pressure:

The left ventricle completes pumping the blood into the
aorta and the aortic valve closes at the maximum pressure,
Psys

The blood pressure begins to fall as the blood flows
through the arteries

The rate of flowing of the blood depends on the resistance
of a blood vessel

Viscosity of the blood
Length of the vessels
Radius of the blood vessels
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Arterial Blood Pressure:

The viscosity of the blood is relatively constant, except
under diseased states like erythrocytemia (or when athletes
take erythropoietin or EPO to overstimulate the
production of red blood cells)
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Arterial Blood Pressure 3

Arterial Blood Pressure:

The viscosity of the blood is relatively constant, except
under diseased states like erythrocytemia (or when athletes
take erythropoietin or EPO to overstimulate the
production of red blood cells)
The length of the blood vessels are relatively constant,
except for when conditions like pregnancy or amputation
occur
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Arterial Blood Pressure:

The viscosity of the blood is relatively constant, except
under diseased states like erythrocytemia (or when athletes
take erythropoietin or EPO to overstimulate the
production of red blood cells)
The length of the blood vessels are relatively constant,
except for when conditions like pregnancy or amputation
occur
The main factor that changes resistance of the blood flow is
change in the radius
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Arterial Blood Pressure 3

Arterial Blood Pressure:

The viscosity of the blood is relatively constant, except
under diseased states like erythrocytemia (or when athletes
take erythropoietin or EPO to overstimulate the
production of red blood cells)
The length of the blood vessels are relatively constant,
except for when conditions like pregnancy or amputation
occur
The main factor that changes resistance of the blood flow is
change in the radius
Blood pressure becomes a valuable tool for detecting
narrowing of the blood vessels by hypertension or
atherosclerosis
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Modeling Blood Pressure:

Experimentally, it has been observed that systemic blood
flow, Qs, is proportional to the difference between the arterial
and venous pressures (Pa(t) − Pv(t)) with the proportionality
dependent on the resistance
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Modeling Blood Pressure:

Experimentally, it has been observed that systemic blood
flow, Qs, is proportional to the difference between the arterial
and venous pressures (Pa(t) − Pv(t)) with the proportionality
dependent on the resistance

If Rs is the systemic resistance (mm Hg/liter/min), then we have
the following equation:

Qs(t) =
1

Rs

(Pa(t) − Pv(t))
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Modeling Blood Pressure 1

Modeling Blood Pressure:

Experimentally, it has been observed that systemic blood
flow, Qs, is proportional to the difference between the arterial
and venous pressures (Pa(t) − Pv(t)) with the proportionality
dependent on the resistance

If Rs is the systemic resistance (mm Hg/liter/min), then we have
the following equation:

Qs(t) =
1

Rs

(Pa(t) − Pv(t))

To simplify the model, we take advantage of the fact that venous
pressures are very low, so we approximate the systemic flow by
the equation:

Qs(t) =
1

Rs

Pa(t)
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Modeling Blood Pressure 2

Compliance:

Compliance is the stretchability of a vessel, which is a
property that allows a vessel to change the volume in
response to pressure changes
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Modeling Blood Pressure 2

Compliance:

Compliance is the stretchability of a vessel, which is a
property that allows a vessel to change the volume in
response to pressure changes

The higher the compliance the easier it is for a vessel to
expand in response to increased pressure
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Modeling Blood Pressure 2

Compliance:

Compliance is the stretchability of a vessel, which is a
property that allows a vessel to change the volume in
response to pressure changes

The higher the compliance the easier it is for a vessel to
expand in response to increased pressure

Resistance and compliance have a roughly inverse
relationship
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Modeling Blood Pressure 2

Compliance:

Compliance is the stretchability of a vessel, which is a
property that allows a vessel to change the volume in
response to pressure changes

The higher the compliance the easier it is for a vessel to
expand in response to increased pressure

Resistance and compliance have a roughly inverse
relationship

Experimentally, the arterial volume, Va, is roughly equal to
the compliance, Ca, times the arterial pressure

Va(t) = CaPa(t)
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Modeling Blood Pressure 3

Differential Equation for Blood Flow:

The flow representing the change in the arterial volume is
given by the difference between the rate of flow entering
the aorta and the rate of flow from the aorta
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Modeling Blood Pressure 3

Differential Equation for Blood Flow:

The flow representing the change in the arterial volume is
given by the difference between the rate of flow entering
the aorta and the rate of flow from the aorta

Since the aortic valve is closed during systole, no blood is
entering the aorta
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Modeling Blood Pressure 3

Differential Equation for Blood Flow:

The flow representing the change in the arterial volume is
given by the difference between the rate of flow entering
the aorta and the rate of flow from the aorta

Since the aortic valve is closed during systole, no blood is
entering the aorta

The differential equation is

dVa(t)

dt
= flow rate in − flow rate out = 0 − Qs(t)
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Modeling Blood Pressure 3

Differential Equation for Blood Flow:

The flow representing the change in the arterial volume is
given by the difference between the rate of flow entering
the aorta and the rate of flow from the aorta

Since the aortic valve is closed during systole, no blood is
entering the aorta

The differential equation is

dVa(t)

dt
= flow rate in − flow rate out = 0 − Qs(t)

Thus,
dVa(t)

dt
= − 1

Rs
Pa(t)
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Modeling Blood Pressure 4

Differential Equation for Blood Flow: Since
Va(t) = CaPa(t),

dVa(t)

dt
= Ca

dPa(t)

dt
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Modeling Blood Pressure 4

Differential Equation for Blood Flow: Since
Va(t) = CaPa(t),

dVa(t)

dt
= Ca

dPa(t)

dt

This gives the initial value problem

dPa(t)

dt
= − 1

CaRs
Pa(t) with Pa(0) = Psys
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Modeling Blood Pressure 4

Differential Equation for Blood Flow: Since
Va(t) = CaPa(t),

dVa(t)

dt
= Ca

dPa(t)

dt

This gives the initial value problem

dPa(t)

dt
= − 1

CaRs
Pa(t) with Pa(0) = Psys

The solution is

Pa(t) = Psyse
−

t
CaRs for t ∈ [0, T ]
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Diagnosis with Model 1

Diagnosis with Model: How can this model be used to
provide a non-invasive method for estimating the physiological
parameters for compliance, Ca , and resistance, Rs
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Diagnosis with Model: How can this model be used to
provide a non-invasive method for estimating the physiological
parameters for compliance, Ca , and resistance, Rs

Measurable physiological quantities are
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Diagnosis with Model 1

Diagnosis with Model: How can this model be used to
provide a non-invasive method for estimating the physiological
parameters for compliance, Ca , and resistance, Rs

Measurable physiological quantities are
The heart rate or pulse, 1

T
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Diagnosis with Model: How can this model be used to
provide a non-invasive method for estimating the physiological
parameters for compliance, Ca , and resistance, Rs

Measurable physiological quantities are
The heart rate or pulse, 1

T

Cardiac output, Q, using a doppler sonogram
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Diagnosis with Model 1

Diagnosis with Model: How can this model be used to
provide a non-invasive method for estimating the physiological
parameters for compliance, Ca , and resistance, Rs

Measurable physiological quantities are
The heart rate or pulse, 1

T

Cardiac output, Q, using a doppler sonogram
The systolic and diastolic pressures, Psys and Pdia
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Diagnosis with Model 1

Diagnosis with Model: How can this model be used to
provide a non-invasive method for estimating the physiological
parameters for compliance, Ca , and resistance, Rs

Measurable physiological quantities are
The heart rate or pulse, 1

T

Cardiac output, Q, using a doppler sonogram
The systolic and diastolic pressures, Psys and Pdia

Compliance comes from the stroke volume, V ,

V = Vsys − Vdia = CaPsys − CaPdia
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Diagnosis with Model 1

Diagnosis with Model: How can this model be used to
provide a non-invasive method for estimating the physiological
parameters for compliance, Ca , and resistance, Rs

Measurable physiological quantities are
The heart rate or pulse, 1

T

Cardiac output, Q, using a doppler sonogram
The systolic and diastolic pressures, Psys and Pdia

Compliance comes from the stroke volume, V ,

V = Vsys − Vdia = CaPsys − CaPdia

But V = QT , so compliance satisfies

Ca =
QT

Psys − Pdia
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Diagnosis with Model 2

Resistance: The model gives the diastolic pressure just before the
next heart beat

Pdia = Psyse
−

T

CaRs

Solve this equation for the resistance, Rs

Rs =
T

Ca (ln(Psys) − ln(Pdia))

Joseph M. Mahaffy, 〈mahaffy@math.sdsu.edu〉
Lecture Notes – Linear Differential Equations
— (16/71)



Introduction
Blood Pressure

Radioactive Decay
Solution of Linear Growth and Decay Models

Newton’s Law of Cooling
Solution of General Linear Model

Pollution in a Lake

Cardiac Cycle
Arterial Blood Pressure
Modeling Blood Pressure
Diagnosis with Model
Example of Athlete

Diagnosis with Model 2

Resistance: The model gives the diastolic pressure just before the
next heart beat

Pdia = Psyse
−

T

CaRs

Solve this equation for the resistance, Rs

Rs =
T

Ca (ln(Psys) − ln(Pdia))

Normal Person
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Diagnosis with Model 2

Resistance: The model gives the diastolic pressure just before the
next heart beat

Pdia = Psyse
−

T

CaRs

Solve this equation for the resistance, Rs

Rs =
T

Ca (ln(Psys) − ln(Pdia))

Normal Person

Pulse of approximately 70 beats/min ( 1
T

)
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Diagnosis with Model 2

Resistance: The model gives the diastolic pressure just before the
next heart beat

Pdia = Psyse
−

T

CaRs

Solve this equation for the resistance, Rs

Rs =
T

Ca (ln(Psys) − ln(Pdia))

Normal Person

Pulse of approximately 70 beats/min ( 1
T

)
Cardiac output of Q = 5.6 (liters/min)
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Diagnosis with Model 2

Resistance: The model gives the diastolic pressure just before the
next heart beat

Pdia = Psyse
−

T

CaRs

Solve this equation for the resistance, Rs

Rs =
T

Ca (ln(Psys) − ln(Pdia))

Normal Person

Pulse of approximately 70 beats/min ( 1
T

)
Cardiac output of Q = 5.6 (liters/min)
Systolic and diastolic pressures of Psys = 120 mm Hg and
Pdia = 80 mm Hg
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Diagnosis with Model 2

Resistance: The model gives the diastolic pressure just before the
next heart beat

Pdia = Psyse
−

T

CaRs

Solve this equation for the resistance, Rs

Rs =
T

Ca (ln(Psys) − ln(Pdia))

Normal Person

Pulse of approximately 70 beats/min ( 1
T

)
Cardiac output of Q = 5.6 (liters/min)
Systolic and diastolic pressures of Psys = 120 mm Hg and
Pdia = 80 mm Hg

Compute the compliance and resistance for a normal person

Ca = 0.002 (liters/mm Hg) and Rs = 17.6 (mm Hg/liter/min)
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Example of Athlete 1

Example of an Athlete: Consider a trained athlete
considered in very good condition
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Example of Athlete 1

Example of an Athlete: Consider a trained athlete
considered in very good condition
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Example of Athlete 1

Example of an Athlete: Consider a trained athlete
considered in very good condition

Suppose an athlete has

A pulse of 60 beats/min (at rest)
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Example of Athlete 1

Example of an Athlete: Consider a trained athlete
considered in very good condition

Suppose an athlete has

A pulse of 60 beats/min (at rest)
A blood pressure of 120/75
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Example of Athlete 1

Example of an Athlete: Consider a trained athlete
considered in very good condition

Suppose an athlete has

A pulse of 60 beats/min (at rest)
A blood pressure of 120/75
A measured cardiac output of 6 liters/min
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Example of Athlete 1

Example of an Athlete: Consider a trained athlete
considered in very good condition

Suppose an athlete has

A pulse of 60 beats/min (at rest)
A blood pressure of 120/75
A measured cardiac output of 6 liters/min

Find the compliance, Ca, and systemic resistance, Rs,
of the arteries for this individual
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Example of Athlete 2

Solution: From the formula, compliance, Ca

Ca =
QT

Psys − Pdia
=

6.0/60

120 − 75
= 0.00222 (liters/mm Hg)
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QT
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This is slightly larger than for a normal person

The systemic resistance, Rs, satisfies

Rs =
T

Ca (ln(Psys) − ln(Pdia))

=
1/60
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Solution: From the formula, compliance, Ca

Ca =
QT

Psys − Pdia
=

6.0/60

120 − 75
= 0.00222 (liters/mm Hg)

This is slightly larger than for a normal person

The systemic resistance, Rs, satisfies

Rs =
T

Ca (ln(Psys) − ln(Pdia))

=
1/60

0.00222(ln(120) − ln(75))
= 15.96 (mm Hg/liter/min)

This is lower than for a normal person, which is what we would
expect for someone in better condition
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3H (tritium) is used to tag certain DNA base pairs
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Radioactive Decay

Radioactive Decay: Radioactive elements are important in
many biological applications

3H (tritium) is used to tag certain DNA base pairs
Add to mutant strains of E. coli that are unable to
manufacture one particular DNA base
Using antibiotics, one uses the radioactive signal to
determine how much DNA is replicated under a particular
set of experimental conditions

Radioactive iodine is often used to detect or treat thyroid
problems
Most experiments are run so that radioactive decay is not
an issue

3H has a half-life of 12.5 yrs
131I has a half-life of 8 days
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Carbon Radiodating: One important application of
radioactive decay is the dating of biological specimens

A living organism is continually changing its carbon with
the environment

Plants directly absorb CO2 from the atmosphere
Animals get their carbon either directly or indirectly from
plants

Gamma radiation that bombards the Earth keeps the ratio
of 14C to 12C fairly constant in the atmospheric CO2
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Carbon Radiodating 1

Carbon Radiodating: One important application of
radioactive decay is the dating of biological specimens

A living organism is continually changing its carbon with
the environment

Plants directly absorb CO2 from the atmosphere
Animals get their carbon either directly or indirectly from
plants

Gamma radiation that bombards the Earth keeps the ratio
of 14C to 12C fairly constant in the atmospheric CO2

14C stays at a constant concentration until the organism
dies
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the amount of 14C remaining
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Modeling Carbon Radiodating: Radioactive carbon, 14C, decays
with a half-life of 5730 yr

Living tissue shows a radioactivity of about 15.3 disintegrations
per minute (dpm) per gram of carbon

The loss of 14C from a sample at any time t is proportional to
the amount of 14C remaining

Let R(t) be the dpm per gram of 14C from an ancient object

The differential equation for a gram of 14C

dR(t)

dt
= −kR(t) with R(0) = 15.3
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Carbon Radiodating 2

Modeling Carbon Radiodating: Radioactive carbon, 14C, decays
with a half-life of 5730 yr

Living tissue shows a radioactivity of about 15.3 disintegrations
per minute (dpm) per gram of carbon

The loss of 14C from a sample at any time t is proportional to
the amount of 14C remaining

Let R(t) be the dpm per gram of 14C from an ancient object

The differential equation for a gram of 14C

dR(t)

dt
= −kR(t) with R(0) = 15.3

This differential equation has the solution

R(t) = 15.3 e−kt, where k = ln(2)
5730 = 0.000121
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found to have a radioactive count of 5.2 dpm per g of carbon

Find the age of this object

Solution: From above

5.2 = 15.3 e−kt

Joseph M. Mahaffy, 〈mahaffy@math.sdsu.edu〉
Lecture Notes – Linear Differential Equations
— (22/71)



Introduction
Blood Pressure

Radioactive Decay
Solution of Linear Growth and Decay Models

Newton’s Law of Cooling
Solution of General Linear Model

Pollution in a Lake

Carbon Radiodating
Hyperthyroidism

Example: Carbon Radiodating

Example Carbon Radiodating: Suppose that an object is
found to have a radioactive count of 5.2 dpm per g of carbon

Find the age of this object

Solution: From above

5.2 = 15.3 e−kt

ekt = 15.3
5.2 = 2.94
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Example: Carbon Radiodating

Example Carbon Radiodating: Suppose that an object is
found to have a radioactive count of 5.2 dpm per g of carbon

Find the age of this object

Solution: From above

5.2 = 15.3 e−kt

ekt = 15.3
5.2 = 2.94

kt = ln(2.94)
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Example: Carbon Radiodating

Example Carbon Radiodating: Suppose that an object is
found to have a radioactive count of 5.2 dpm per g of carbon

Find the age of this object

Solution: From above

5.2 = 15.3 e−kt

ekt = 15.3
5.2 = 2.94

kt = ln(2.94)

Thus, t = ln(2.94)
k = 8915 yr,
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Example: Carbon Radiodating

Example Carbon Radiodating: Suppose that an object is
found to have a radioactive count of 5.2 dpm per g of carbon

Find the age of this object

Solution: From above

5.2 = 15.3 e−kt

ekt = 15.3
5.2 = 2.94

kt = ln(2.94)

Thus, t = ln(2.94)
k = 8915 yr, so the object is about 9000 yrs old
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Hyperthyroidism is a serious health problem caused by an
overactive thyroid

The primary hormone released is thyroxine, which
stimulates the release of other hormones
Too many other hormones, such as insulin and the sex
hormones
Result is low blood sugar causing lethargy or mood
disorders and sexual dysfunction
One treatment for hyperthyroidism is ablating the
thyroid with a large dose of radioactive iodine, 131I

The thyroid concentrates iodine brought into the body
The 131I undergoes both β and γ radioactive decay, which
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Hyperthyroidism 1

Hyperthyroidism is a serious health problem caused by an
overactive thyroid

The primary hormone released is thyroxine, which
stimulates the release of other hormones
Too many other hormones, such as insulin and the sex
hormones
Result is low blood sugar causing lethargy or mood
disorders and sexual dysfunction
One treatment for hyperthyroidism is ablating the
thyroid with a large dose of radioactive iodine, 131I

The thyroid concentrates iodine brought into the body
The 131I undergoes both β and γ radioactive decay, which
destroys tissue
Patient is given medicine to supplement the loss of thyroxine
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Hyperthyroidism: Treatment

Based upon the thyroid condition and body mass, a
standard dose ranges from 110-150 mCi (milliCuries),
given in a special “cocktail”

Joseph M. Mahaffy, 〈mahaffy@math.sdsu.edu〉
Lecture Notes – Linear Differential Equations
— (24/71)



Introduction
Blood Pressure

Radioactive Decay
Solution of Linear Growth and Decay Models

Newton’s Law of Cooling
Solution of General Linear Model

Pollution in a Lake

Carbon Radiodating
Hyperthyroidism

Hyperthyroidism 2

Hyperthyroidism: Treatment

Based upon the thyroid condition and body mass, a
standard dose ranges from 110-150 mCi (milliCuries),
given in a special “cocktail”
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the blood from the gut
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It is assumed that almost 100% of the 131I is absorbed by
the blood from the gut
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around 3 days
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It is assumed that almost 100% of the 131I is absorbed by
the blood from the gut

The thyroid uptakes 30% of this isotope of iodine, peaking
around 3 days

The remainder is excreted in the urine
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Carbon Radiodating
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Hyperthyroidism 2

Hyperthyroidism: Treatment

Based upon the thyroid condition and body mass, a
standard dose ranges from 110-150 mCi (milliCuries),
given in a special “cocktail”

It is assumed that almost 100% of the 131I is absorbed by
the blood from the gut

The thyroid uptakes 30% of this isotope of iodine, peaking
around 3 days

The remainder is excreted in the urine

The half-life of 131I is 8 days, so this isotope rapidly decays

Still the patient must remain in a designated room for 3-4
days for this procedure, so that he or she does not irradiate
the public from his or her treatment
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Hyperthyroidism Example: Assume that a patient is given
a 120 mCi cocktail of 131I and that 30% is absorbed by the
thyroid
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Hyperthyroidism Example: Assume that a patient is given
a 120 mCi cocktail of 131I and that 30% is absorbed by the
thyroid

Find the amount of 131I in the thyroid (in mCi), if the
patient is released four days after swallowing the
radioactive cocktail
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Hyperthyroidism Example: Assume that a patient is given
a 120 mCi cocktail of 131I and that 30% is absorbed by the
thyroid

Find the amount of 131I in the thyroid (in mCi), if the
patient is released four days after swallowing the
radioactive cocktail

Calculate how many mCis the patient’s thyroid retains
after 30 days, assuming that it was taken up by the thyroid
and not excreted in the urine
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Solution:

Assume for simplicity of the model that the 131I is
immediately absorbed into the thyroid, then stays there
until it undergoes radioactive decay
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Solution:

Assume for simplicity of the model that the 131I is
immediately absorbed into the thyroid, then stays there
until it undergoes radioactive decay

Since the thyroid uptakes 30% of the 120 mCi, assume
that the thyroid has 36 mCi immediately after the
procedure
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Solution:

Assume for simplicity of the model that the 131I is
immediately absorbed into the thyroid, then stays there
until it undergoes radioactive decay

Since the thyroid uptakes 30% of the 120 mCi, assume
that the thyroid has 36 mCi immediately after the
procedure

This is an oversimplification as it takes time for the 131I to
accumulate in the thyroid
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Hyperthyroidism 4

Solution:

Assume for simplicity of the model that the 131I is
immediately absorbed into the thyroid, then stays there
until it undergoes radioactive decay

Since the thyroid uptakes 30% of the 120 mCi, assume
that the thyroid has 36 mCi immediately after the
procedure

This is an oversimplification as it takes time for the 131I to
accumulate in the thyroid

This allows the simple model

dR

dt
= −k R(t) with R(0) = 36 mCi
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Solution (cont): The radioactive decay model is

dR

dt
= −k R(t) with R(0) = 36 mCi
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Solution (cont): The radioactive decay model is

dR

dt
= −k R(t) with R(0) = 36 mCi

The solution is
R(t) = 36 e−kt
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Solution (cont): The radioactive decay model is

dR

dt
= −k R(t) with R(0) = 36 mCi

The solution is
R(t) = 36 e−kt

Since the half-life of 131I is 8 days, after 8 days there will
are 18 mCi of 131I
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Solution (cont): The radioactive decay model is

dR

dt
= −k R(t) with R(0) = 36 mCi

The solution is
R(t) = 36 e−kt

Since the half-life of 131I is 8 days, after 8 days there will
are 18 mCi of 131I

Thus, R(8) = 18 = 36 e−8k, so

e8k = 2 or 8k = ln(2)
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Solution (cont): The radioactive decay model is

dR

dt
= −k R(t) with R(0) = 36 mCi

The solution is
R(t) = 36 e−kt

Since the half-life of 131I is 8 days, after 8 days there will
are 18 mCi of 131I

Thus, R(8) = 18 = 36 e−8k, so

e8k = 2 or 8k = ln(2)

Thus, k = ln(2)
8 = 0.0866 day−1

Joseph M. Mahaffy, 〈mahaffy@math.sdsu.edu〉
Lecture Notes – Linear Differential Equations
— (27/71)



Introduction
Blood Pressure

Radioactive Decay
Solution of Linear Growth and Decay Models

Newton’s Law of Cooling
Solution of General Linear Model

Pollution in a Lake

Carbon Radiodating
Hyperthyroidism
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Solution (cont): Since

R(t) = 36 e−kt with k = 0.0866 day−1
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Solution (cont): Since

R(t) = 36 e−kt with k = 0.0866 day−1

At the time of the patient’s release t = 4 days, so in the
thyroid

R(4) = 36 e−4k =
36√

2
= 25.46 mCi
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Solution (cont): Since

R(t) = 36 e−kt with k = 0.0866 day−1

At the time of the patient’s release t = 4 days, so in the
thyroid

R(4) = 36 e−4k =
36√

2
= 25.46 mCi

After 30 days, we find in the thyroid

R(30) = 36 e−30k = 2.68 mCi
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Graph of R(t)
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General Solution to Linear Growth and Decay Models:
Consider

dy

dt
= a y with y(t0) = y0
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Solution of Linear Growth and Decay Models

General Solution to Linear Growth and Decay Models:
Consider

dy

dt
= a y with y(t0) = y0

The solution is
y(t) = y0e

a(t−t0)
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Example: Linear Decay Model: Consider

dy

dt
= −0.3 y with y(4) = 12
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Example: Linear Decay Model

Example: Linear Decay Model: Consider

dy

dt
= −0.3 y with y(4) = 12

The solution is
y(t) = 12 e−0.3(t−4)
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Newton’s Law of Cooling:
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Newton’s Law of Cooling 1

Newton’s Law of Cooling:

After a murder (or death by other causes), the forensic
scientist takes the temperature of the body
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Newton’s Law of Cooling 1

Newton’s Law of Cooling:

After a murder (or death by other causes), the forensic
scientist takes the temperature of the body

Later the temperature of the body is taken again to find
the rate at which the body is cooling
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Newton’s Law of Cooling 1

Newton’s Law of Cooling:

After a murder (or death by other causes), the forensic
scientist takes the temperature of the body

Later the temperature of the body is taken again to find
the rate at which the body is cooling

Two (or more) data points are used to extrapolate back to
when the murder occurred
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Newton’s Law of Cooling 1

Newton’s Law of Cooling:

After a murder (or death by other causes), the forensic
scientist takes the temperature of the body

Later the temperature of the body is taken again to find
the rate at which the body is cooling

Two (or more) data points are used to extrapolate back to
when the murder occurred

This property is known as Newton’s Law of Cooling
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Newton’s Law of Cooling 2

Newton’s Law of Cooling states that the rate of change in
temperature of a cooling body is proportional to the difference
between the temperature of the body and the surrounding
environmental temperature
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Newton’s Law of Cooling 2

Newton’s Law of Cooling states that the rate of change in
temperature of a cooling body is proportional to the difference
between the temperature of the body and the surrounding
environmental temperature

If T (t) is the temperature of the body, then it satisfies the
differential equation

dT

dt
= −k(T (t) − Te) with T (0) = T0
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Newton’s Law of Cooling 2

Newton’s Law of Cooling states that the rate of change in
temperature of a cooling body is proportional to the difference
between the temperature of the body and the surrounding
environmental temperature

If T (t) is the temperature of the body, then it satisfies the
differential equation

dT

dt
= −k(T (t) − Te) with T (0) = T0

The parameter k is dependent on the specific properties of
the particular object (body in this case)
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Newton’s Law of Cooling 2

Newton’s Law of Cooling states that the rate of change in
temperature of a cooling body is proportional to the difference
between the temperature of the body and the surrounding
environmental temperature

If T (t) is the temperature of the body, then it satisfies the
differential equation

dT

dt
= −k(T (t) − Te) with T (0) = T0

The parameter k is dependent on the specific properties of
the particular object (body in this case)

Te is the environmental temperature
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Newton’s Law of Cooling 2

Newton’s Law of Cooling states that the rate of change in
temperature of a cooling body is proportional to the difference
between the temperature of the body and the surrounding
environmental temperature

If T (t) is the temperature of the body, then it satisfies the
differential equation

dT

dt
= −k(T (t) − Te) with T (0) = T0

The parameter k is dependent on the specific properties of
the particular object (body in this case)

Te is the environmental temperature

T0 is the initial temperature of the object
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Murder Example

Suppose that a murder victim is found at 8:30 am
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Murder Example

Suppose that a murder victim is found at 8:30 am

The temperature of the body at that time is 30◦C
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Murder Example

Suppose that a murder victim is found at 8:30 am

The temperature of the body at that time is 30◦C

Assume that the room in which the murder victim lay was
a constant 22◦C
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Murder Example

Suppose that a murder victim is found at 8:30 am

The temperature of the body at that time is 30◦C

Assume that the room in which the murder victim lay was
a constant 22◦C

Suppose that an hour later the temperature of the body is
28◦C

Joseph M. Mahaffy, 〈mahaffy@math.sdsu.edu〉
Lecture Notes – Linear Differential Equations
— (34/71)



Introduction
Blood Pressure

Radioactive Decay
Solution of Linear Growth and Decay Models

Newton’s Law of Cooling
Solution of General Linear Model

Pollution in a Lake

Murder Investigation
Cooling Tea

Murder Example 1

Murder Example

Suppose that a murder victim is found at 8:30 am

The temperature of the body at that time is 30◦C

Assume that the room in which the murder victim lay was
a constant 22◦C

Suppose that an hour later the temperature of the body is
28◦C

Normal temperature of a human body when it is alive is
37◦C
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Murder Example

Suppose that a murder victim is found at 8:30 am

The temperature of the body at that time is 30◦C

Assume that the room in which the murder victim lay was
a constant 22◦C

Suppose that an hour later the temperature of the body is
28◦C

Normal temperature of a human body when it is alive is
37◦C

Use this information to determine the approximate time
that the murder occurred
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Murder Example 2

Solution: From the model for Newton’s Law of Cooling and
the information that is given, if we set t = 0 to be 8:30 am, then
we solve the initial value problem

dT

dt
= −k(T (t) − 22) with T (0) = 30
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Murder Example 2

Solution: From the model for Newton’s Law of Cooling and
the information that is given, if we set t = 0 to be 8:30 am, then
we solve the initial value problem

dT

dt
= −k(T (t) − 22) with T (0) = 30

Make a change of variables z(t) = T (t) − 22
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Murder Example 2

Solution: From the model for Newton’s Law of Cooling and
the information that is given, if we set t = 0 to be 8:30 am, then
we solve the initial value problem

dT

dt
= −k(T (t) − 22) with T (0) = 30

Make a change of variables z(t) = T (t) − 22
Then z ′(t) = T ′(t), so the differential equation above
becomes

dz

dt
= −kz(t), with z(0) = T (0) − 22 = 8
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Murder Example 2

Solution: From the model for Newton’s Law of Cooling and
the information that is given, if we set t = 0 to be 8:30 am, then
we solve the initial value problem

dT

dt
= −k(T (t) − 22) with T (0) = 30

Make a change of variables z(t) = T (t) − 22
Then z ′(t) = T ′(t), so the differential equation above
becomes

dz

dt
= −kz(t), with z(0) = T (0) − 22 = 8

This is the radioactive decay problem that we solved
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Murder Example 2

Solution: From the model for Newton’s Law of Cooling and
the information that is given, if we set t = 0 to be 8:30 am, then
we solve the initial value problem

dT

dt
= −k(T (t) − 22) with T (0) = 30

Make a change of variables z(t) = T (t) − 22
Then z ′(t) = T ′(t), so the differential equation above
becomes

dz

dt
= −kz(t), with z(0) = T (0) − 22 = 8

This is the radioactive decay problem that we solved
The solution is

z(t) = 8 e−kt
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Solution (cont): From the solution z(t) = 8 e−kt, we have

z(t) = T (t) − 22, so T (t) = z(t) + 22

T (t) = 22 + 8 e−kt
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Murder Example 3

Solution (cont): From the solution z(t) = 8 e−kt, we have

z(t) = T (t) − 22, so T (t) = z(t) + 22

T (t) = 22 + 8 e−kt

One hour later the body temperature is 28◦C

T (1) = 28 = 22 + 8 e−k
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Solution (cont): From the solution z(t) = 8 e−kt, we have

z(t) = T (t) − 22, so T (t) = z(t) + 22

T (t) = 22 + 8 e−kt

One hour later the body temperature is 28◦C

T (1) = 28 = 22 + 8 e−k

Solving
6 = 8 e−k or ek = 4

3
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Murder Example 3

Solution (cont): From the solution z(t) = 8 e−kt, we have

z(t) = T (t) − 22, so T (t) = z(t) + 22

T (t) = 22 + 8 e−kt

One hour later the body temperature is 28◦C

T (1) = 28 = 22 + 8 e−k

Solving
6 = 8 e−k or ek = 4

3

Thus, k = ln
(

4
3

)

= 0.2877
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Solution (cont): It only remains to find out when the murder
occurred
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Murder Example 4

Solution (cont): It only remains to find out when the murder
occurred

At the time of death, td, the body temperature is 37◦C

T (td) = 37 = 22 + 8 e−k
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Murder Example 4

Solution (cont): It only remains to find out when the murder
occurred

At the time of death, td, the body temperature is 37◦C

T (td) = 37 = 22 + 8 e−k

Thus,

8 e−ktd = 37 − 22 = 15 or e−ktd = 15
8 = 1.875
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Solution (cont): It only remains to find out when the murder
occurred

At the time of death, td, the body temperature is 37◦C

T (td) = 37 = 22 + 8 e−k

Thus,

8 e−ktd = 37 − 22 = 15 or e−ktd = 15
8 = 1.875

This gives −ktd = ln(1.875) or

td = − ln(1.875)

k
= −2.19
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Solution (cont): It only remains to find out when the murder
occurred

At the time of death, td, the body temperature is 37◦C

T (td) = 37 = 22 + 8 e−k

Thus,

8 e−ktd = 37 − 22 = 15 or e−ktd = 15
8 = 1.875

This gives −ktd = ln(1.875) or

td = − ln(1.875)

k
= −2.19

The murder occurred about 2 hours 11 minutes before the body
was found, which places the time of death around 6:19 am
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Cooling Tea 1

Cooling Tea: We would like to determine whether a cup of tea
cools more rapidly by adding cold milk right after brewing the
tea or if you wait 5 minutes to add the milk
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Cooling Tea 1

Cooling Tea: We would like to determine whether a cup of tea
cools more rapidly by adding cold milk right after brewing the
tea or if you wait 5 minutes to add the milk

Begin with 4
5 cup of boiling hot tea, T (0) = 100◦C
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Cooling Tea 1

Cooling Tea: We would like to determine whether a cup of tea
cools more rapidly by adding cold milk right after brewing the
tea or if you wait 5 minutes to add the milk

Begin with 4
5 cup of boiling hot tea, T (0) = 100◦C

Assume the tea cools according to Newton’s law of cooling

dT

dt
= −k(T (t) − Te) with Te = 20◦C
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Cooling Tea

Cooling Tea 1

Cooling Tea: We would like to determine whether a cup of tea
cools more rapidly by adding cold milk right after brewing the
tea or if you wait 5 minutes to add the milk

Begin with 4
5 cup of boiling hot tea, T (0) = 100◦C

Assume the tea cools according to Newton’s law of cooling

dT

dt
= −k(T (t) − Te) with Te = 20◦C

k is the cooling constant based on the properties of the cup
to be calculated
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Radioactive Decay
Solution of Linear Growth and Decay Models

Newton’s Law of Cooling
Solution of General Linear Model

Pollution in a Lake

Murder Investigation
Cooling Tea

Cooling Tea 1

Cooling Tea: We would like to determine whether a cup of tea
cools more rapidly by adding cold milk right after brewing the
tea or if you wait 5 minutes to add the milk

Begin with 4
5 cup of boiling hot tea, T (0) = 100◦C

Assume the tea cools according to Newton’s law of cooling

dT

dt
= −k(T (t) − Te) with Te = 20◦C

k is the cooling constant based on the properties of the cup
to be calculated

a. In the first scenario, you let the tea cool for 5 minutes,
then add 1

5 cup of cold milk, 5◦C
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Cooling Tea (cont):
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Cooling Tea 2

Cooling Tea (cont):

Assume that after 2 minutes the tea has cooled to a
temperature of 95◦C
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Murder Investigation
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Cooling Tea 2

Cooling Tea (cont):

Assume that after 2 minutes the tea has cooled to a
temperature of 95◦C

Determine the value of k, which we assume stays the same
in this problem

Joseph M. Mahaffy, 〈mahaffy@math.sdsu.edu〉
Lecture Notes – Linear Differential Equations
— (39/71)



Introduction
Blood Pressure

Radioactive Decay
Solution of Linear Growth and Decay Models

Newton’s Law of Cooling
Solution of General Linear Model
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Cooling Tea 2

Cooling Tea (cont):

Assume that after 2 minutes the tea has cooled to a
temperature of 95◦C

Determine the value of k, which we assume stays the same
in this problem

Mix in the milk, assuming that the temperature mixes
perfectly in proportion to the volume of the two liquids

Joseph M. Mahaffy, 〈mahaffy@math.sdsu.edu〉
Lecture Notes – Linear Differential Equations
— (39/71)



Introduction
Blood Pressure

Radioactive Decay
Solution of Linear Growth and Decay Models

Newton’s Law of Cooling
Solution of General Linear Model
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Cooling Tea 2

Cooling Tea (cont):

Assume that after 2 minutes the tea has cooled to a
temperature of 95◦C

Determine the value of k, which we assume stays the same
in this problem

Mix in the milk, assuming that the temperature mixes
perfectly in proportion to the volume of the two liquids

b. In the second case, add 1
5 cup of cold milk, 5◦C,

immediately and mix it thoroughly
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Cooling Tea 2

Cooling Tea (cont):

Assume that after 2 minutes the tea has cooled to a
temperature of 95◦C

Determine the value of k, which we assume stays the same
in this problem

Mix in the milk, assuming that the temperature mixes
perfectly in proportion to the volume of the two liquids

b. In the second case, add 1
5 cup of cold milk, 5◦C,

immediately and mix it thoroughly

Find how long until each cup of tea reaches a
temperature of 70◦C
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Cooling Tea 3

Solution of Cooling Tea: Find the rate constant k for

dT

dt
= −k(T (t) − 20), T (0) = 100 and T (2) = 95
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Murder Investigation
Cooling Tea

Cooling Tea 3

Solution of Cooling Tea: Find the rate constant k for

dT

dt
= −k(T (t) − 20), T (0) = 100 and T (2) = 95

Let z(t) = T (t) − 20, so z(0) − T (0) − 20 = 80
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Cooling Tea 3

Solution of Cooling Tea: Find the rate constant k for

dT

dt
= −k(T (t) − 20), T (0) = 100 and T (2) = 95

Let z(t) = T (t) − 20, so z(0) − T (0) − 20 = 80
Since z ′(t) = T ′(t), the initial value problem becomes

dz

dt
= −k z(t), z(0) = 80
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Pollution in a Lake
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Cooling Tea 3

Solution of Cooling Tea: Find the rate constant k for

dT

dt
= −k(T (t) − 20), T (0) = 100 and T (2) = 95

Let z(t) = T (t) − 20, so z(0) − T (0) − 20 = 80
Since z ′(t) = T ′(t), the initial value problem becomes

dz

dt
= −k z(t), z(0) = 80

The solution is

z(t) = 80 e−kt = T (t) − 20
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Cooling Tea 3

Solution of Cooling Tea: Find the rate constant k for

dT

dt
= −k(T (t) − 20), T (0) = 100 and T (2) = 95

Let z(t) = T (t) − 20, so z(0) − T (0) − 20 = 80
Since z ′(t) = T ′(t), the initial value problem becomes

dz

dt
= −k z(t), z(0) = 80

The solution is

z(t) = 80 e−kt = T (t) − 20

Thus,
T (t) = 80 e−kt + 20
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Solution (cont): The solution is

T (t) = 80 e−kt + 20
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Murder Investigation
Cooling Tea

Cooling Tea 4

Solution (cont): The solution is

T (t) = 80 e−kt + 20

Since T (2) = 95,

95 = 80e−2k + 20 or e2k = 80
75
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Solution (cont): The solution is

T (t) = 80 e−kt + 20

Since T (2) = 95,

95 = 80e−2k + 20 or e2k = 80
75

k =
ln( 80

75)
2 = 0.03227
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Newton’s Law of Cooling
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Murder Investigation
Cooling Tea

Cooling Tea 4

Solution (cont): The solution is

T (t) = 80 e−kt + 20

Since T (2) = 95,

95 = 80e−2k + 20 or e2k = 80
75

k =
ln( 80

75)
2 = 0.03227

Find the temperature at 5 min

T (5) = 80e−5k + 20 = 88.1◦C
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Solution of General Linear Model

Pollution in a Lake

Murder Investigation
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Cooling Tea 4

Solution (cont): The solution is

T (t) = 80 e−kt + 20

Since T (2) = 95,

95 = 80e−2k + 20 or e2k = 80
75

k =
ln( 80

75)
2 = 0.03227

Find the temperature at 5 min

T (5) = 80e−5k + 20 = 88.1◦C

Now mix the 4
5 cup of tea at 88.1◦C with the 1

5 cup of milk
at 5◦C, so

T+(5) = 88.1
(

4
5

)

+
(

51
5

)

= 71.5◦C
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Cooling Tea 5

Solution (cont): For the first scenario, the temperature after
adding the milk after 5 min satisfies

T+(5) = 71.5◦C
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Solution (cont): For the first scenario, the temperature after
adding the milk after 5 min satisfies

T+(5) = 71.5◦C

The new initial value problem is

dT

dt
= −k(T (t) − 20), T (5) = 71.5◦C
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Cooling Tea 5

Solution (cont): For the first scenario, the temperature after
adding the milk after 5 min satisfies

T+(5) = 71.5◦C

The new initial value problem is

dT

dt
= −k(T (t) − 20), T (5) = 71.5◦C

With the same substitution, z(t) = T (t) − 20,

dz

dt
= −kz, z(5) = 51.5
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Cooling Tea 5

Solution (cont): For the first scenario, the temperature after
adding the milk after 5 min satisfies

T+(5) = 71.5◦C

The new initial value problem is

dT

dt
= −k(T (t) − 20), T (5) = 71.5◦C

With the same substitution, z(t) = T (t) − 20,

dz

dt
= −kz, z(5) = 51.5

This has the solution

z(t) = 51.5e−k(t−5) = T (t) − 20
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Solution (cont): For the first scenario, the temperature
satisfies

T (t) = 51.5e−k(t−5) + 20
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Cooling Tea 6

Solution (cont): For the first scenario, the temperature
satisfies

T (t) = 51.5e−k(t−5) + 20

To find when the tea is 70◦C, solve

70 = 51.5e−k(t−5) + 20
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Solution (cont): For the first scenario, the temperature
satisfies

T (t) = 51.5e−k(t−5) + 20

To find when the tea is 70◦C, solve

70 = 51.5e−k(t−5) + 20

Thus,
ek(t−5) = 51.5

50
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Cooling Tea 6

Solution (cont): For the first scenario, the temperature
satisfies

T (t) = 51.5e−k(t−5) + 20

To find when the tea is 70◦C, solve

70 = 51.5e−k(t−5) + 20

Thus,
ek(t−5) = 51.5

50

It follows that k(t − 5) = ln(51.5/50), so

t = 5 +
ln(51.5/50)

k
= 5.92 min
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Cooling Tea 7

Solution (cont): For the second scenario, we mix the tea and
milk, so

T (0) = 100
(

4
5

)

+ 5
(

1
5

)

= 81◦C
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Solution (cont): For the second scenario, we mix the tea and
milk, so

T (0) = 100
(

4
5

)

+ 5
(

1
5

)

= 81◦C

The new initial value problem is

dT

dt
= −k(T (t) − 20), T (0) = 81◦C

Joseph M. Mahaffy, 〈mahaffy@math.sdsu.edu〉
Lecture Notes – Linear Differential Equations
— (44/71)



Introduction
Blood Pressure

Radioactive Decay
Solution of Linear Growth and Decay Models

Newton’s Law of Cooling
Solution of General Linear Model

Pollution in a Lake

Murder Investigation
Cooling Tea

Cooling Tea 7

Solution (cont): For the second scenario, we mix the tea and
milk, so

T (0) = 100
(

4
5

)

+ 5
(

1
5

)

= 81◦C

The new initial value problem is

dT

dt
= −k(T (t) − 20), T (0) = 81◦C

With z(t) = T (t) − 20,

dz

dt
= −k z(t), z(0) = 61
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Cooling Tea 7

Solution (cont): For the second scenario, we mix the tea and
milk, so

T (0) = 100
(

4
5

)

+ 5
(

1
5

)

= 81◦C

The new initial value problem is

dT

dt
= −k(T (t) − 20), T (0) = 81◦C

With z(t) = T (t) − 20,

dz

dt
= −k z(t), z(0) = 61

This has the solution

z(t) = 61e−kt = T (t) − 20
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Solution (cont): For the second scenario, the solution is

T (t) = 61 e−kt + 20
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Solution (cont): For the second scenario, the solution is

T (t) = 61 e−kt + 20

To find when the tea is 70◦C, solve

70 = 61e−kt + 20
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Cooling Tea 8

Solution (cont): For the second scenario, the solution is

T (t) = 61 e−kt + 20

To find when the tea is 70◦C, solve

70 = 61e−kt + 20

Thus,
ekt = 61

50
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Solution (cont): For the second scenario, the solution is

T (t) = 61 e−kt + 20

To find when the tea is 70◦C, solve

70 = 61e−kt + 20

Thus,
ekt = 61

50

Since kt = ln
(

61
50

)

,

t =
ln(61/50

k
= 6.16 min
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Cooling Tea 8

Solution (cont): For the second scenario, the solution is

T (t) = 61 e−kt + 20

To find when the tea is 70◦C, solve

70 = 61e−kt + 20

Thus,
ekt = 61

50

Since kt = ln
(

61
50

)

,

t =
ln(61/50

k
= 6.16 min

Waiting to pour in the milk for 5 minutes, saves about 15
seconds in cooling time
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Pollution in a Lake

Solution of General Linear Model 1

Solution of General Linear Model Consider the Linear
Model

dy

dt
= a y + b with y(t0) = y0
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Pollution in a Lake

Solution of General Linear Model 1

Solution of General Linear Model Consider the Linear
Model

dy

dt
= a y + b with y(t0) = y0

Rewrite equation as

dy

dt
= a

(

y +
b

a

)
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Solution of General Linear Model 1

Solution of General Linear Model Consider the Linear
Model

dy

dt
= a y + b with y(t0) = y0

Rewrite equation as

dy

dt
= a

(

y +
b

a

)

Make the substitution z(t) = y(t) + b
a , so dz

dt = dy
dt and

z(t0) = y0 + b
a

dz

dt
= a z with z(t0) = y0 + b

a
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Solution of General Linear Model 2

Solution of General Linear Model The shifted model is

dz

dt
= a z with z(t0) = y0 + b

a
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Pollution in a Lake

Solution of General Linear Model 2

Solution of General Linear Model The shifted model is

dz

dt
= a z with z(t0) = y0 + b

a

The solution to this problem is

z(t) =

(

y0 +
b

a

)

ea(t−t0) = y(t) +
b

a
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Solution of Linear Growth and Decay Models

Newton’s Law of Cooling
Solution of General Linear Model

Pollution in a Lake

Solution of General Linear Model 2

Solution of General Linear Model The shifted model is

dz

dt
= a z with z(t0) = y0 + b

a

The solution to this problem is

z(t) =

(

y0 +
b

a

)

ea(t−t0) = y(t) +
b

a

The solution is

y(t) =

(

y0 +
b

a

)

ea(t−t0) − b

a
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Example of Linear Model 1

Example of Linear Model Consider the Linear Model

dy

dt
= 5 − 0.2 y with y(3) = 7
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Solution of General Linear Model

Pollution in a Lake

Example of Linear Model 1

Example of Linear Model Consider the Linear Model

dy

dt
= 5 − 0.2 y with y(3) = 7

Rewrite equation as

dy

dt
= −0.2(y − 25)
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Radioactive Decay
Solution of Linear Growth and Decay Models

Newton’s Law of Cooling
Solution of General Linear Model

Pollution in a Lake

Example of Linear Model 1

Example of Linear Model Consider the Linear Model

dy

dt
= 5 − 0.2 y with y(3) = 7

Rewrite equation as

dy

dt
= −0.2(y − 25)

Make the substitution z(t) = y(t) − 25, so dz
dt = dy

dt and
z(3) = −18

dz

dt
= −0.2 z with z(3) = −18
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Example of Linear Model The substituted model is

dz

dt
= −0.2 z with z(3) = −18
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Pollution in a Lake

Example of Linear Model 2

Example of Linear Model The substituted model is

dz

dt
= −0.2 z with z(3) = −18

Thus,
z(t) = −18 e−0.2(t−3) = y(t) − 25
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Solution of Linear Growth and Decay Models
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Pollution in a Lake

Example of Linear Model 2

Example of Linear Model The substituted model is

dz

dt
= −0.2 z with z(3) = −18

Thus,
z(t) = −18 e−0.2(t−3) = y(t) − 25

The solution is
y(t) = 25 − 18 e−0.2(t−3)
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Pollution in a Lake: Introduction

One of the most urgent problems in modern society is how
to reduce the pollution and toxicity of our water sources
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Pollution in a Lake 1

Pollution in a Lake: Introduction

One of the most urgent problems in modern society is how
to reduce the pollution and toxicity of our water sources

These are very complex issues that require a
multidisciplinary approach and are often politically very
intractable because of the key role that water plays in
human society and the many competing interests
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Pollution in a Lake: Introduction

One of the most urgent problems in modern society is how
to reduce the pollution and toxicity of our water sources

These are very complex issues that require a
multidisciplinary approach and are often politically very
intractable because of the key role that water plays in
human society and the many competing interests

Here we examine a very simplistic model for pollution of a
lake
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Pollution in a Lake 1

Pollution in a Lake: Introduction

One of the most urgent problems in modern society is how
to reduce the pollution and toxicity of our water sources

These are very complex issues that require a
multidisciplinary approach and are often politically very
intractable because of the key role that water plays in
human society and the many competing interests

Here we examine a very simplistic model for pollution of a
lake

The model illustrates some basic elements from which more
complicated models can be built and analyzed
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Pollution in a Lake: Problem set up

Consider the scenario of a new pesticide that is applied to
fields upstream from a clean lake with volume V
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Pollution in a Lake: Problem set up

Consider the scenario of a new pesticide that is applied to
fields upstream from a clean lake with volume V

Assume that a river receives a constant amount of this new
pesticide into its water, and that it flows into the lake at a
constant rate, f
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Pollution in a Lake: Problem set up

Consider the scenario of a new pesticide that is applied to
fields upstream from a clean lake with volume V

Assume that a river receives a constant amount of this new
pesticide into its water, and that it flows into the lake at a
constant rate, f

This assumption implies that the river has a constant
concentration of the new pesticide, p
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Pollution in a Lake

Example of Pollution with Evaporation

Pollution in a Lake 2

Pollution in a Lake: Problem set up

Consider the scenario of a new pesticide that is applied to
fields upstream from a clean lake with volume V

Assume that a river receives a constant amount of this new
pesticide into its water, and that it flows into the lake at a
constant rate, f

This assumption implies that the river has a constant
concentration of the new pesticide, p

Assume that the lake is well-mixed and maintains a
constant volume by having a river exiting the lake with the
same flow rate, f , of the inflowing river
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Pollution in a Lake

Example of Pollution with Evaporation

Newton’s Law of Cooling 3

Diagram for Lake Problem Design a model using a linear
first order differential equation for the concentration of the
pesticide in the lake, c(t)

f : flow rate

f

p: pollutant

V: Volume

c t( ): concentration of
pollutant in the lake
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Differential Equation for Pollution in a Lake

Set up a differential equation that describes the mass
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Differential Equation for Pollution in a Lake

Set up a differential equation that describes the mass
balance of the pollutant
The change in amount of pollutant =

Amount entering - Amount leaving

Joseph M. Mahaffy, 〈mahaffy@math.sdsu.edu〉
Lecture Notes – Linear Differential Equations
— (54/71)



Introduction
Blood Pressure

Radioactive Decay
Solution of Linear Growth and Decay Models

Newton’s Law of Cooling
Solution of General Linear Model

Pollution in a Lake

Example of Pollution with Evaporation

Pollution in a Lake 4

Differential Equation for Pollution in a Lake

Set up a differential equation that describes the mass
balance of the pollutant
The change in amount of pollutant =

Amount entering - Amount leaving
The amount entering is simply the concentration of the
pollutant, p, in the river times the flow rate of the river, f
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Pollution in a Lake 4

Differential Equation for Pollution in a Lake

Set up a differential equation that describes the mass
balance of the pollutant
The change in amount of pollutant =

Amount entering - Amount leaving
The amount entering is simply the concentration of the
pollutant, p, in the river times the flow rate of the river, f
The amount leaving has the same flow rate, f
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Newton’s Law of Cooling
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Pollution in a Lake

Example of Pollution with Evaporation

Pollution in a Lake 4

Differential Equation for Pollution in a Lake

Set up a differential equation that describes the mass
balance of the pollutant
The change in amount of pollutant =

Amount entering - Amount leaving
The amount entering is simply the concentration of the
pollutant, p, in the river times the flow rate of the river, f
The amount leaving has the same flow rate, f
Since the lake is assumed to be well-mixed, the
concentration in the outflowing river will be equal to the
concentration of the pollutant in the lake, c(t)
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Pollution in a Lake

Example of Pollution with Evaporation

Pollution in a Lake 4

Differential Equation for Pollution in a Lake

Set up a differential equation that describes the mass
balance of the pollutant
The change in amount of pollutant =

Amount entering - Amount leaving
The amount entering is simply the concentration of the
pollutant, p, in the river times the flow rate of the river, f
The amount leaving has the same flow rate, f
Since the lake is assumed to be well-mixed, the
concentration in the outflowing river will be equal to the
concentration of the pollutant in the lake, c(t)
The product f c(t) gives the amount of pollutant leaving
the lake per unit time
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Pollution in a Lake 5

Differential Equations for Amount and Concentration
of Pollutant

The change in amount of pollutant satisfies the model

da(t)

dt
= f p − f c(t)

Joseph M. Mahaffy, 〈mahaffy@math.sdsu.edu〉
Lecture Notes – Linear Differential Equations
— (55/71)



Introduction
Blood Pressure

Radioactive Decay
Solution of Linear Growth and Decay Models

Newton’s Law of Cooling
Solution of General Linear Model

Pollution in a Lake

Example of Pollution with Evaporation

Pollution in a Lake 5

Differential Equations for Amount and Concentration
of Pollutant

The change in amount of pollutant satisfies the model

da(t)

dt
= f p − f c(t)

Since the lake maintains a constant volume V , then
c(t) = a(t)/V , which also implies that c ′(t ) = a ′(t)/V
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Example of Pollution with Evaporation

Pollution in a Lake 5

Differential Equations for Amount and Concentration
of Pollutant

The change in amount of pollutant satisfies the model

da(t)

dt
= f p − f c(t)

Since the lake maintains a constant volume V , then
c(t) = a(t)/V , which also implies that c ′(t ) = a ′(t)/V
Dividing the above differential equation by the volume V ,

dc(t)

dt
=

f

V
(p − c(t))
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Solution of Linear Growth and Decay Models

Newton’s Law of Cooling
Solution of General Linear Model

Pollution in a Lake

Example of Pollution with Evaporation

Pollution in a Lake 5

Differential Equations for Amount and Concentration
of Pollutant

The change in amount of pollutant satisfies the model

da(t)

dt
= f p − f c(t)

Since the lake maintains a constant volume V , then
c(t) = a(t)/V , which also implies that c ′(t ) = a ′(t)/V
Dividing the above differential equation by the volume V ,

dc(t)

dt
=

f

V
(p − c(t))

If the lake is initially clean, then c(0) = 0
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Pollution in a Lake 6

Soluton of the Differential Equation: Rewrite the
differential equation for the concentration of pollutant as

dc(t)

dt
= − f

V
(c(t) − p) with c(0) = 0

Joseph M. Mahaffy, 〈mahaffy@math.sdsu.edu〉
Lecture Notes – Linear Differential Equations
— (56/71)



Introduction
Blood Pressure

Radioactive Decay
Solution of Linear Growth and Decay Models

Newton’s Law of Cooling
Solution of General Linear Model

Pollution in a Lake

Example of Pollution with Evaporation

Pollution in a Lake 6

Soluton of the Differential Equation: Rewrite the
differential equation for the concentration of pollutant as

dc(t)

dt
= − f

V
(c(t) − p) with c(0) = 0

This DE should remind you of Newton’s Law of Cooling
with f/V acting like k and p acting like Te
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Example of Pollution with Evaporation

Pollution in a Lake 6

Soluton of the Differential Equation: Rewrite the
differential equation for the concentration of pollutant as

dc(t)

dt
= − f

V
(c(t) − p) with c(0) = 0

This DE should remind you of Newton’s Law of Cooling
with f/V acting like k and p acting like Te

Make the substitution, z(t) = c(t) − p, so z ′(t) = c ′(t)
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Pollution in a Lake

Example of Pollution with Evaporation

Pollution in a Lake 6

Soluton of the Differential Equation: Rewrite the
differential equation for the concentration of pollutant as

dc(t)

dt
= − f

V
(c(t) − p) with c(0) = 0

This DE should remind you of Newton’s Law of Cooling
with f/V acting like k and p acting like Te

Make the substitution, z(t) = c(t) − p, so z ′(t) = c ′(t)
The initial condition becomes z(0) = c(0) − p = −p
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Example of Pollution with Evaporation

Pollution in a Lake 6

Soluton of the Differential Equation: Rewrite the
differential equation for the concentration of pollutant as

dc(t)

dt
= − f

V
(c(t) − p) with c(0) = 0

This DE should remind you of Newton’s Law of Cooling
with f/V acting like k and p acting like Te

Make the substitution, z(t) = c(t) − p, so z ′(t) = c ′(t)
The initial condition becomes z(0) = c(0) − p = −p
The initial value problem in z(t) becomes,

dz(t)

dt
= − f

V
z(t), with z(0) = −p
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Soluton of the Differential Equation (cont): Since

dz(t)

dt
= − f

V
z(t), with z(0) = −p
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Pollution in a Lake 7

Soluton of the Differential Equation (cont): Since

dz(t)

dt
= − f

V
z(t), with z(0) = −p

The solution to this problem is

z(t) = −p e−
ft

V = c(t) − p
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Pollution in a Lake 7

Soluton of the Differential Equation (cont): Since

dz(t)

dt
= − f

V
z(t), with z(0) = −p

The solution to this problem is

z(t) = −p e−
ft

V = c(t) − p

c(t) = p
(

1 − e−
ft

V

)
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Pollution in a Lake 7

Soluton of the Differential Equation (cont): Since

dz(t)

dt
= − f

V
z(t), with z(0) = −p

The solution to this problem is

z(t) = −p e−
ft

V = c(t) − p

c(t) = p
(

1 − e−
ft

V

)

The exponential decay in this solution shows

lim
t→∞

c(t) = p
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Pollution in a Lake 7

Soluton of the Differential Equation (cont): Since

dz(t)

dt
= − f

V
z(t), with z(0) = −p

The solution to this problem is

z(t) = −p e−
ft

V = c(t) − p

c(t) = p
(

1 − e−
ft

V

)

The exponential decay in this solution shows

lim
t→∞

c(t) = p

This is exactly what you would expect, as the entering
river has a concentration of p
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Example: Pollution in a Lake Part 1

Suppose that you begin with a 10,000 m3 clean lake

Assume the river entering has a flow of 100 m3/day and
the concentration of some pesticide in the river is measured
to have a concentration of 5 ppm (parts per million)
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Example: Pollution in a Lake 1

Example: Pollution in a Lake Part 1

Suppose that you begin with a 10,000 m3 clean lake

Assume the river entering has a flow of 100 m3/day and
the concentration of some pesticide in the river is measured
to have a concentration of 5 ppm (parts per million)

Form the differential equation describing the concentration
of pollutant in the lake at any time t and solve it
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Example: Pollution in a Lake 1

Example: Pollution in a Lake Part 1

Suppose that you begin with a 10,000 m3 clean lake

Assume the river entering has a flow of 100 m3/day and
the concentration of some pesticide in the river is measured
to have a concentration of 5 ppm (parts per million)

Form the differential equation describing the concentration
of pollutant in the lake at any time t and solve it

Find out how long it takes for this lake to have a
concentration of 2 ppm
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Example: Pollution in a Lake 2

Solution: This example follows the model derived above, so
the differential equation for the concentration of pollutant is

dc(t)

dt
= − f

V
(c(t) − p) with c(0) = 0
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Example: Pollution in a Lake 2

Solution: This example follows the model derived above, so
the differential equation for the concentration of pollutant is

dc(t)

dt
= − f

V
(c(t) − p) with c(0) = 0

Since V = 10, 000, f = 100, and p = 5,

dc(t)

dt
= − 100

10000
(c(t) − 5) with c(0) = 0
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Example: Pollution in a Lake 2

Solution: This example follows the model derived above, so
the differential equation for the concentration of pollutant is

dc(t)

dt
= − f

V
(c(t) − p) with c(0) = 0

Since V = 10, 000, f = 100, and p = 5,

dc(t)

dt
= − 100

10000
(c(t) − 5) with c(0) = 0

Let z(t) = c(t) − 5, then the differential equation becomes,

dz

dt
= −0.01z(t), with z(0) = −5
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Example: Pollution in a Lake 2

Solution: This example follows the model derived above, so
the differential equation for the concentration of pollutant is

dc(t)

dt
= − f

V
(c(t) − p) with c(0) = 0

Since V = 10, 000, f = 100, and p = 5,

dc(t)

dt
= − 100

10000
(c(t) − 5) with c(0) = 0

Let z(t) = c(t) − 5, then the differential equation becomes,

dz

dt
= −0.01z(t), with z(0) = −5

This has a solution

z(t) = −5e−0.01t = c(t) − 5
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Example: Pollution in a Lake 3

Solution (cont): The concentration of pollutant in the lake is

c(t) = 5
(

1 − e−0.01t
)
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Example: Pollution in a Lake 3

Solution (cont): The concentration of pollutant in the lake is

c(t) = 5
(

1 − e−0.01t
)

To find how long it takes for the concentration to reach
2 ppm, solve the equation

2 = 5 − 5e−0.01t)
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Example: Pollution in a Lake 3

Solution (cont): The concentration of pollutant in the lake is

c(t) = 5
(

1 − e−0.01t
)

To find how long it takes for the concentration to reach
2 ppm, solve the equation

2 = 5 − 5e−0.01t)

Thus,
e−0.01t) = 3

5 or e0.01t) = 5
3
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Example: Pollution in a Lake 3

Solution (cont): The concentration of pollutant in the lake is

c(t) = 5
(

1 − e−0.01t
)

To find how long it takes for the concentration to reach
2 ppm, solve the equation

2 = 5 − 5e−0.01t)

Thus,
e−0.01t) = 3

5 or e0.01t) = 5
3

Solving this for t, we obtain

t = 100 ln
(

5
3

)

= 51.1 days
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Suppose that when the concentration reaches 4 ppm, the
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Example: Pollution in a Lake 4

Example: Pollution in a Lake Part 2

Suppose that when the concentration reaches 4 ppm, the
pesticide is banned

For simplicity, assume that the concentration of pesticide
drops immediately to zero in the river
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Example: Pollution in a Lake 4

Example: Pollution in a Lake Part 2

Suppose that when the concentration reaches 4 ppm, the
pesticide is banned

For simplicity, assume that the concentration of pesticide
drops immediately to zero in the river

Assume that the pesticide is not degraded or lost by any
means other than dilution
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Example: Pollution in a Lake 4

Example: Pollution in a Lake Part 2

Suppose that when the concentration reaches 4 ppm, the
pesticide is banned

For simplicity, assume that the concentration of pesticide
drops immediately to zero in the river

Assume that the pesticide is not degraded or lost by any
means other than dilution

Find how long until the concentration reaches 1 ppm
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Example: Pollution in a Lake 5

Solution: The new initial value problem becomes

dc

dt
= −0.01(c(t) − 0) = −0.01c(t) with c(0) = 4
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Example: Pollution in a Lake 5

Solution: The new initial value problem becomes

dc

dt
= −0.01(c(t) − 0) = −0.01c(t) with c(0) = 4

This problem is in the form of a radioactive decay problem
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Example: Pollution in a Lake 5

Solution: The new initial value problem becomes

dc

dt
= −0.01(c(t) − 0) = −0.01c(t) with c(0) = 4

This problem is in the form of a radioactive decay problem
This has the solution

c(t) = 4e−0.01t
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Example: Pollution in a Lake 5

Solution: The new initial value problem becomes

dc

dt
= −0.01(c(t) − 0) = −0.01c(t) with c(0) = 4

This problem is in the form of a radioactive decay problem
This has the solution

c(t) = 4e−0.01t

To find how long it takes for the concentration to return to
1 ppm, solve the equation

1 = 4e−0.01t or e0.01t = 4
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Example: Pollution in a Lake 5

Solution: The new initial value problem becomes

dc

dt
= −0.01(c(t) − 0) = −0.01c(t) with c(0) = 4

This problem is in the form of a radioactive decay problem
This has the solution

c(t) = 4e−0.01t

To find how long it takes for the concentration to return to
1 ppm, solve the equation

1 = 4e−0.01t or e0.01t = 4

Solving this for t

t = 100 ln(4) = 138.6 days
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Pollution in a Lake: Complications The above discussion for
pollution in a lake fails to account for many significant complications
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Pollution in a Lake: Complications

Pollution in a Lake: Complications The above discussion for
pollution in a lake fails to account for many significant complications

There are considerations of degradation of the pesticide,
stratefication in the lake, and uptake and reentering of the
pesticide through interaction with the organisms living in the
lake
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Pollution in a Lake: Complications

Pollution in a Lake: Complications The above discussion for
pollution in a lake fails to account for many significant complications

There are considerations of degradation of the pesticide,
stratefication in the lake, and uptake and reentering of the
pesticide through interaction with the organisms living in the
lake

The river will vary in its flow rate, and the leeching of the
pesticide into river is highly dependent on rainfall, ground water
movement, and rate of pesticide application
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Pollution in a Lake: Complications

Pollution in a Lake: Complications The above discussion for
pollution in a lake fails to account for many significant complications

There are considerations of degradation of the pesticide,
stratefication in the lake, and uptake and reentering of the
pesticide through interaction with the organisms living in the
lake

The river will vary in its flow rate, and the leeching of the
pesticide into river is highly dependent on rainfall, ground water
movement, and rate of pesticide application

Obviously, there are many other complications that would
increase the difficulty of analyzing this model
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Pollution in a Lake: Complications

Pollution in a Lake: Complications The above discussion for
pollution in a lake fails to account for many significant complications

There are considerations of degradation of the pesticide,
stratefication in the lake, and uptake and reentering of the
pesticide through interaction with the organisms living in the
lake

The river will vary in its flow rate, and the leeching of the
pesticide into river is highly dependent on rainfall, ground water
movement, and rate of pesticide application

Obviously, there are many other complications that would
increase the difficulty of analyzing this model

The next section shows numerical methods to handle more
complicated models
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Example: Lake Pollution with Evaporation 1

Example: Lake Pollution with Evaporation

Suppose that a new industry starts up river from a lake at t = 0
days, and this industry starts dumping a toxic pollutant, P (t),
into the river at a rate of 7 g/day, which flows directly into the
lake
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Example: Lake Pollution with Evaporation 1

Example: Lake Pollution with Evaporation

Suppose that a new industry starts up river from a lake at t = 0
days, and this industry starts dumping a toxic pollutant, P (t),
into the river at a rate of 7 g/day, which flows directly into the
lake

The flow of the river is 1000 m3/day, which goes into the lake
that maintains a constant volume of 400,000 m3
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Example: Lake Pollution with Evaporation 1

Example: Lake Pollution with Evaporation

Suppose that a new industry starts up river from a lake at t = 0
days, and this industry starts dumping a toxic pollutant, P (t),
into the river at a rate of 7 g/day, which flows directly into the
lake

The flow of the river is 1000 m3/day, which goes into the lake
that maintains a constant volume of 400,000 m3

The lake is situated in a hot area and loses 50 m3/day of water to
evaporation (pure water with no pollutant), while the remainder
of the water exits at a rate of 950 m3/day through a river
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Example: Lake Pollution with Evaporation 1

Example: Lake Pollution with Evaporation

Suppose that a new industry starts up river from a lake at t = 0
days, and this industry starts dumping a toxic pollutant, P (t),
into the river at a rate of 7 g/day, which flows directly into the
lake

The flow of the river is 1000 m3/day, which goes into the lake
that maintains a constant volume of 400,000 m3

The lake is situated in a hot area and loses 50 m3/day of water to
evaporation (pure water with no pollutant), while the remainder
of the water exits at a rate of 950 m3/day through a river

Assume that all quantities are well-mixed and that there are no
time delays for the pollutant reaching the lake from the river
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Example of Pollution with Evaporation

Example: Lake Pollution with Evaporation 2

Example: Lake Pollution with Evaporation (cont) Part a

Write a differential equation that describes the
concentration, c(t), of the pollutant in the lake, using units
of mg/m3
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Example: Lake Pollution with Evaporation 2

Example: Lake Pollution with Evaporation (cont) Part a

Write a differential equation that describes the
concentration, c(t), of the pollutant in the lake, using units
of mg/m3

Solve the differential equation
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Example: Lake Pollution with Evaporation 2

Example: Lake Pollution with Evaporation (cont) Part a

Write a differential equation that describes the
concentration, c(t), of the pollutant in the lake, using units
of mg/m3

Solve the differential equation

If a concentration of only 2 mg/m3 is toxic to the fish
population, then find how long until this level is reached
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Pollution in a Lake

Example of Pollution with Evaporation

Example: Lake Pollution with Evaporation 2

Example: Lake Pollution with Evaporation (cont) Part a

Write a differential equation that describes the
concentration, c(t), of the pollutant in the lake, using units
of mg/m3

Solve the differential equation

If a concentration of only 2 mg/m3 is toxic to the fish
population, then find how long until this level is reached

If unchecked by regulations, then find what the eventual
concentration of the pollutant is in the lake, assuming
constant output by the new industry
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Example: Lake Pollution with Evaporation 3

Solution: Let P (t) be the amount of pollutant
The change in amount of pollutant =

Amount entering - Amount leaving
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Example: Lake Pollution with Evaporation 3

Solution: Let P (t) be the amount of pollutant
The change in amount of pollutant =

Amount entering - Amount leaving

The change in amount is dP
dt
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Example: Lake Pollution with Evaporation 3

Solution: Let P (t) be the amount of pollutant
The change in amount of pollutant =

Amount entering - Amount leaving

The change in amount is dP
dt

The concentration is given by c(t) = P (t)/V and
c ′(t) = P ′(t)/V
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Example of Pollution with Evaporation

Example: Lake Pollution with Evaporation 3

Solution: Let P (t) be the amount of pollutant
The change in amount of pollutant =

Amount entering - Amount leaving

The change in amount is dP
dt

The concentration is given by c(t) = P (t)/V and
c ′(t) = P ′(t)/V

The amount entering is the constant rate of pollutant
dumped into the river, which is given by k = 7000 mg/day
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Example: Lake Pollution with Evaporation 3

Solution: Let P (t) be the amount of pollutant
The change in amount of pollutant =

Amount entering - Amount leaving

The change in amount is dP
dt

The concentration is given by c(t) = P (t)/V and
c ′(t) = P ′(t)/V

The amount entering is the constant rate of pollutant
dumped into the river, which is given by k = 7000 mg/day

The amount leaving is given by the concentration of the
pollutant in the lake, c(t) (in mg/m3), times the flow of
water out of the lake, f = 950 m3/day
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Example: Lake Pollution with Evaporation 4

Solution (cont): The conservation of amount of pollutant is
given by the equation:

dP

dt
= k − f c(t) = 7000 − 950 c(t)
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Example: Lake Pollution with Evaporation 4

Solution (cont): The conservation of amount of pollutant is
given by the equation:

dP

dt
= k − f c(t) = 7000 − 950 c(t)

Evaporation concentrates the pollutant by allowing water
to leave without the pollutant
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Example: Lake Pollution with Evaporation 4

Solution (cont): The conservation of amount of pollutant is
given by the equation:

dP

dt
= k − f c(t) = 7000 − 950 c(t)

Evaporation concentrates the pollutant by allowing water
to leave without the pollutant
Divide the equation above by the volume, V = 400, 000 m3

(

1

V

)

dP (t)

dt
=

k

V
− f

V
c(t) = 7

400 − 950
400000c(t)
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Example: Lake Pollution with Evaporation 4

Solution (cont): The conservation of amount of pollutant is
given by the equation:

dP

dt
= k − f c(t) = 7000 − 950 c(t)

Evaporation concentrates the pollutant by allowing water
to leave without the pollutant
Divide the equation above by the volume, V = 400, 000 m3

(

1

V

)

dP (t)

dt
=

k

V
− f

V
c(t) = 7

400 − 950
400000c(t)

The concentration equation is

dc

dt
= 7

400 − 950
400000c(t) = − f

V

(

c(t) − k
f

)
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Example of Pollution with Evaporation

Example: Lake Pollution with Evaporation 5

Solution (cont): The concentration equation is

dc

dt
= − 95

40000

(

c(t) − 700
95

)
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Example: Lake Pollution with Evaporation 5

Solution (cont): The concentration equation is

dc

dt
= − 95

40000

(

c(t) − 700
95

)

Make the change of variables, z(t) = c(t) − 700
95 , with

z(0) = −700
95
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Example: Lake Pollution with Evaporation 5

Solution (cont): The concentration equation is

dc

dt
= − 95

40000

(

c(t) − 700
95

)

Make the change of variables, z(t) = c(t) − 700
95 , with

z(0) = −700
95

The differential equation is

dz

dt
= − 95

40000z(t) with z(0) = −700
95
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Example: Lake Pollution with Evaporation 5

Solution (cont): The concentration equation is

dc

dt
= − 95

40000

(

c(t) − 700
95

)

Make the change of variables, z(t) = c(t) − 700
95 , with

z(0) = −700
95

The differential equation is

dz

dt
= − 95

40000z(t) with z(0) = −700
95

The solution is

z(t) = −700
95 e−95t/40000 = c(t) − 700

95
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Example: Lake Pollution with Evaporation 6

Solution (cont): The concentration equation is

c(t) = 700
95

(

1 − e−95t/40000
)

≈ 7.368
(

1 − e−0.002375t
)
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Example: Lake Pollution with Evaporation 6

Solution (cont): The concentration equation is

c(t) = 700
95

(

1 − e−95t/40000
)

≈ 7.368
(

1 − e−0.002375t
)

If a concentration of 2 mg/m3 is toxic to the fish
population, then find when c(t) = 2 mg/m3
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Example: Lake Pollution with Evaporation 6

Solution (cont): The concentration equation is

c(t) = 700
95

(

1 − e−95t/40000
)

≈ 7.368
(

1 − e−0.002375t
)

If a concentration of 2 mg/m3 is toxic to the fish
population, then find when c(t) = 2 mg/m3

Solve

2 = 7.368
(

1 − e−0.002375t
)

or e0.002375t ≈ 1.3726
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Newton’s Law of Cooling
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Example: Lake Pollution with Evaporation 6

Solution (cont): The concentration equation is

c(t) = 700
95

(

1 − e−95t/40000
)

≈ 7.368
(

1 − e−0.002375t
)

If a concentration of 2 mg/m3 is toxic to the fish
population, then find when c(t) = 2 mg/m3

Solve

2 = 7.368
(

1 − e−0.002375t
)

or e0.002375t ≈ 1.3726

Thus, t = ln(1.3726)
0.002375 ≈ 133.3 days
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Example: Lake Pollution with Evaporation 6

Solution (cont): The concentration equation is

c(t) = 700
95

(

1 − e−95t/40000
)

≈ 7.368
(

1 − e−0.002375t
)

If a concentration of 2 mg/m3 is toxic to the fish
population, then find when c(t) = 2 mg/m3

Solve

2 = 7.368
(

1 − e−0.002375t
)

or e0.002375t ≈ 1.3726

Thus, t = ln(1.3726)
0.002375 ≈ 133.3 days

The limiting concentration is

lim
t→∞

c(t) = 700
95 ≈ 7.368
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Example: Lake Pollution with Evaporation 7

Example: Lake Pollution with Evaporation (cont) Part b
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Example of Pollution with Evaporation

Example: Lake Pollution with Evaporation 7

Example: Lake Pollution with Evaporation (cont) Part b

Suppose that the lake is at the limiting level of pollutant
and a new environmental law is passed that shuts down the
industry at a new time t = 0 days
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Example: Lake Pollution with Evaporation 7

Example: Lake Pollution with Evaporation (cont) Part b

Suppose that the lake is at the limiting level of pollutant
and a new environmental law is passed that shuts down the
industry at a new time t = 0 days

Write a new differential equation describing the situation
following the shutdown of the industry and solve this
equation
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Example: Lake Pollution with Evaporation 7

Example: Lake Pollution with Evaporation (cont) Part b

Suppose that the lake is at the limiting level of pollutant
and a new environmental law is passed that shuts down the
industry at a new time t = 0 days

Write a new differential equation describing the situation
following the shutdown of the industry and solve this
equation

Calculate how long it takes for the lake to return to a level
that allows fish to survive
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Example: Lake Pollution with Evaporation 8

Solution: Now k = 0, so the initial value problem becomes

dc

dt
= − 95

40000c(t) = −0.002375 c(t) with c(0) = 700
95
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Example: Lake Pollution with Evaporation 8

Solution: Now k = 0, so the initial value problem becomes

dc

dt
= − 95

40000c(t) = −0.002375 c(t) with c(0) = 700
95

This has the solution

c(t) = 700
95 e−0.002375t ≈ 7.368 e−0.002375t
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Example: Lake Pollution with Evaporation 8

Solution: Now k = 0, so the initial value problem becomes

dc

dt
= − 95

40000c(t) = −0.002375 c(t) with c(0) = 700
95

This has the solution

c(t) = 700
95 e−0.002375t ≈ 7.368 e−0.002375t

The concentration is reduced to 2 mg/m3 when

2 = 7.368 e−0.002375t or e0.002375t = 3.684
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Example: Lake Pollution with Evaporation 8

Solution: Now k = 0, so the initial value problem becomes

dc

dt
= − 95

40000c(t) = −0.002375 c(t) with c(0) = 700
95

This has the solution

c(t) = 700
95 e−0.002375t ≈ 7.368 e−0.002375t

The concentration is reduced to 2 mg/m3 when

2 = 7.368 e−0.002375t or e0.002375t = 3.684

The lake is sufficiently clean for fish when

t = ln(3.684)
0.002375 ≈ 549 days
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