## Calculus for the Life Sciences II

## Lecture Notes－Introduction to Differential Equations

Joseph M．Mahaffy，〈mahaffy＠math．sdsu．edu〉<br>Department of Mathematics and Statistics<br>Dynamical Systems Group<br>Computational Sciences Research Center<br>San Diego State University<br>San Diego，CA 92182－7720<br>http：／／www－rohan．sdsu．edu／～jmahaffy

Fall 2012

## Outline

(1) Introduction

- What is a Differential Equation?
- Malthusian Growth
- Example
(2) Applications of Differential Equations
- Spring Examples
- Evaporation Example
- Nonautonomous Example


## Introduction

## Introduction

- Differential equations frequently arise in modeling situations


## Introduction

## Introduction

- Differential equations frequently arise in modeling situations
- They describe population growth, chemical reactions, heat exchange, motion, and many other applications


## Introduction

## Introduction

- Differential equations frequently arise in modeling situations
- They describe population growth, chemical reactions, heat exchange, motion, and many other applications
- Differential equations are continuous analogs of discrete dynamical systems

What is a Differential Equation? Malthusian Growth Example

## What is a Differential Equation?

- A differential equation is any equation of some unknown function that involves some derivative of the unknown function


## What is a Differential Equation?

## What is a Differential Equation?

- A differential equation is any equation of some unknown function that involves some derivative of the unknown function
- The classical example is Newton's Law of motion


## What is a Differential Equation?

## What is a Differential Equation?

- A differential equation is any equation of some unknown function that involves some derivative of the unknown function
- The classical example is Newton's Law of motion
- The mass of an object times its acceleration is equal to the sum of the forces acting on that object


## What is a Differential Equation?

## What is a Differential Equation?

- A differential equation is any equation of some unknown function that involves some derivative of the unknown function
- The classical example is Newton's Law of motion
- The mass of an object times its acceleration is equal to the sum of the forces acting on that object
- Acceleration is the first derivative of velocity or the second derivative of position


## What is a Differential Equation?

## What is a Differential Equation?

- A differential equation is any equation of some unknown function that involves some derivative of the unknown function
- The classical example is Newton's Law of motion
- The mass of an object times its acceleration is equal to the sum of the forces acting on that object
- Acceleration is the first derivative of velocity or the second derivative of position
- This is an example of a differential equation


## What is a Differential Equation?

## What is a Differential Equation?

- A differential equation is any equation of some unknown function that involves some derivative of the unknown function
- The classical example is Newton's Law of motion
- The mass of an object times its acceleration is equal to the sum of the forces acting on that object
- Acceleration is the first derivative of velocity or the second derivative of position
- This is an example of a differential equation
- In biology, a differential equation describes a growth rate, a reaction rate, or the change in some physiological state


## Malthusian Growth

Discrete Malthusian Growth Population, $P_{n}$, at time $n$ with growth rate, $r$

$$
P_{n+1}=P_{n}+r P_{n}
$$

## Malthusian Growth

Discrete Malthusian Growth Population, $P_{n}$, at time $n$ with growth rate, $r$

$$
P_{n+1}=P_{n}+r P_{n}
$$

Rearrange the discrete Malthusian growth model

$$
P_{n+1}-P_{n}=r P_{n}
$$

## Malthusian Growth

Discrete Malthusian Growth Population, $P_{n}$, at time $n$ with growth rate, $r$

$$
P_{n+1}=P_{n}+r P_{n}
$$

Rearrange the discrete Malthusian growth model

$$
P_{n+1}-P_{n}=r P_{n}
$$

The change in population between $(n+1)^{s t}$ time and the $n^{t h}$ time is proportional to the population at the $n^{\text {th }}$ time

## Malthusian Growth

Malthusian Growth (cont) Let $P(t)$ be the population at time $t$

## Malthusian Growth

Malthusian Growth (cont) Let $P(t)$ be the population at time $t$

- Assume that $r$ is the rate of change of the population per unit time per animal in the population


## Malthusian Growth

Malthusian Growth (cont) Let $P(t)$ be the population at time $t$

- Assume that $r$ is the rate of change of the population per unit time per animal in the population
- Let $\Delta t$ be a small interval of time, then the change in population between $t$ and $t+\Delta t$, satisfies

$$
P(t+\Delta t)-P(t)=\Delta t \cdot r P(t)
$$

## Malthusian Growth

Malthusian Growth (cont) Let $P(t)$ be the population at time $t$

- Assume that $r$ is the rate of change of the population per unit time per animal in the population
- Let $\Delta t$ be a small interval of time, then the change in population between $t$ and $t+\Delta t$, satisfies

$$
P(t+\Delta t)-P(t)=\Delta t \cdot r P(t)
$$

- Biologically, this equation says that the change (difference) in the population over a small period of time is found by taking the rate of growth times the population times the interval of time $\Delta t$


## Malthusian Growth

Malthusian Growth (cont) Let $P(t)$ be the population at time $t$

- Assume that $r$ is the rate of change of the population per unit time per animal in the population
- Let $\Delta t$ be a small interval of time, then the change in population between $t$ and $t+\Delta t$, satisfies

$$
P(t+\Delta t)-P(t)=\Delta t \cdot r P(t)
$$

- Biologically, this equation says that the change (difference) in the population over a small period of time is found by taking the rate of growth times the population times the interval of time $\Delta t$
- The equation above can be rearranged to give

$$
\frac{P(t+\Delta t)-P(t)}{\Delta t}=r P(t)
$$

## Continuous Malthusian Growth

Continuous Malthusian Growth The discrete model was given by

$$
\frac{P(t+\Delta t)-P(t)}{\Delta t}=r P(t)
$$

## Continuous Malthusian Growth

Continuous Malthusian Growth The discrete model was given by

$$
\frac{P(t+\Delta t)-P(t)}{\Delta t}=r P(t)
$$

- The right hand side of the equation should remind you of the definition of the derivative


## Continuous Malthusian Growth

Continuous Malthusian Growth The discrete model was given by

$$
\frac{P(t+\Delta t)-P(t)}{\Delta t}=r P(t)
$$

- The right hand side of the equation should remind you of the definition of the derivative
- Take the limit of $\Delta t \rightarrow 0$, so

$$
\lim _{\Delta t \rightarrow 0} \frac{P(t+\Delta t)-P(t)}{\Delta t}=\frac{d P(t)}{d t}=r P(t)
$$

## Continuous Malthusian Growth

Continuous Malthusian Growth The discrete model was given by

$$
\frac{P(t+\Delta t)-P(t)}{\Delta t}=r P(t)
$$

- The right hand side of the equation should remind you of the definition of the derivative
- Take the limit of $\Delta t \rightarrow 0$, so

$$
\lim _{\Delta t \rightarrow 0} \frac{P(t+\Delta t)-P(t)}{\Delta t}=\frac{d P(t)}{d t}=r P(t)
$$

- This is the continuous Malthusian growth model


## Continuous Malthusian Growth

Solution of Malthusian Growth Model The Malthusian growth model

$$
\frac{d P(t)}{d t}=r P(t)
$$

## Continuous Malthusian Growth

Solution of Malthusian Growth Model The Malthusian growth model

$$
\frac{d P(t)}{d t}=r P(t)
$$

- The rate of change of a population is proportional to the population


## Continuous Malthusian Growth

Solution of Malthusian Growth Model The Malthusian growth model

$$
\frac{d P(t)}{d t}=r P(t)
$$

- The rate of change of a population is proportional to the population
- Let $c$ be an arbitrary constant, so try a solution of the form

$$
P(t)=c e^{r t}
$$

## Continuous Malthusian Growth

Solution of Malthusian Growth Model The Malthusian growth model

$$
\frac{d P(t)}{d t}=r P(t)
$$

- The rate of change of a population is proportional to the population
- Let $c$ be an arbitrary constant, so try a solution of the form

$$
P(t)=c e^{r t}
$$

- Differentiating

$$
\frac{d P(t)}{d t}=c r e^{r t}
$$

which is $r P(t)$, so satisfies the differential equation

## Continuous Malthusian Growth

Solution of Malthusian Growth Model (cont) The Malthusian growth model satisfies

$$
P(t)=c e^{r t}
$$

## Continuous Malthusian Growth

Solution of Malthusian Growth Model (cont) The Malthusian growth model satisfies

$$
P(t)=c e^{r t}
$$

- With the initial condition, $P(0)=P_{0}$, then the unique solution is

$$
P(t)=P_{0} e^{r t}
$$

## Continuous Malthusian Growth

Solution of Malthusian Growth Model (cont) The Malthusian growth model satisfies

$$
P(t)=c e^{r t}
$$

- With the initial condition, $P(0)=P_{0}$, then the unique solution is

$$
P(t)=P_{0} e^{r t}
$$

- Malthusian growth is often called exponential growth


## Example: Malthusian Growth

Example: Malthusian Growth Consider the Malthusian growth model

$$
\frac{d P(t)}{d t}=0.02 P(t) \quad \text { with } \quad P(0)=100
$$

## Example: Malthusian Growth

Example: Malthusian Growth Consider the Malthusian growth model

$$
\frac{d P(t)}{d t}=0.02 P(t) \quad \text { with } \quad P(0)=100
$$

## Skip Example

- Find the solution


## Example: Malthusian Growth

Example: Malthusian Growth Consider the Malthusian growth model

$$
\frac{d P(t)}{d t}=0.02 P(t) \quad \text { with } \quad P(0)=100
$$

## Skip Example

- Find the solution
- Determine how long it takes for this population to double


## Example: Malthusian Growth

Solution: The solution is given by

$$
P(t)=100 e^{0.02 t}
$$

## Example: Malthusian Growth

Solution: The solution is given by

$$
P(t)=100 e^{0.02 t}
$$

We can confirm this by computing

$$
\frac{d P}{d t}=0.02\left(100 e^{0.02 t}\right)=0.02 P(t)
$$

so this solution satisfies the differential equation and the initial condition

## Example: Malthusian Growth

Solution: The solution is given by

$$
P(t)=100 e^{0.02 t}
$$

We can confirm this by computing

$$
\frac{d P}{d t}=0.02\left(100 e^{0.02 t}\right)=0.02 P(t)
$$

so this solution satisfies the differential equation and the initial condition

The population doubles when

$$
200=100 e^{0.02 t}
$$

## Example: Malthusian Growth

Solution: The solution is given by

$$
P(t)=100 e^{0.02 t}
$$

We can confirm this by computing

$$
\frac{d P}{d t}=0.02\left(100 e^{0.02 t}\right)=0.02 P(t)
$$

so this solution satisfies the differential equation and the initial condition

The population doubles when

$$
\begin{array}{cl}
200 & =100 e^{0.02 t} \\
0.02 t=\ln (2) & \text { or } \quad t=50 \ln (2) \approx 34.66
\end{array}
$$

## Example 2: Malthusian Growth

Example 2: Suppose that a culture of Escherichia coli is growing according to the Malthusian growth model

$$
\frac{d P(t)}{d t}=r P(t) \quad \text { with } \quad P(0)=100,000
$$

Skip Example

## Example 2: Malthusian Growth

Example 2: Suppose that a culture of Escherichia coli is growing according to the Malthusian growth model

$$
\frac{d P(t)}{d t}=r P(t) \quad \text { with } \quad P(0)=100,000
$$

## Skip Example

- Assume the population doubles in 25 minutes


## Example 2: Malthusian Growth

Example 2: Suppose that a culture of Escherichia coli is growing according to the Malthusian growth model

$$
\frac{d P(t)}{d t}=r P(t) \quad \text { with } \quad P(0)=100,000
$$

## Skip Example

- Assume the population doubles in 25 minutes
- Find the growth rate constant and the solution to this differential equation


## Example 2: Malthusian Growth

Example 2: Suppose that a culture of Escherichia coli is growing according to the Malthusian growth model

$$
\frac{d P(t)}{d t}=r P(t) \quad \text { with } \quad P(0)=100,000
$$

## Skip Example

- Assume the population doubles in 25 minutes
- Find the growth rate constant and the solution to this differential equation
- Compute the population after one hour


## Example 2: Malthusian Growth

## Solution: The general solution satisfies

$$
P(t)=100,000 e^{r t}
$$

## Example 2: Malthusian Growth

Solution: The general solution satisfies

$$
P(t)=100,000 e^{r t}
$$

- If the population doubles in 25 minutes, then

$$
P(25)=200,000=100,000 e^{25 r}
$$

## Example 2: Malthusian Growth

Solution: The general solution satisfies

$$
P(t)=100,000 e^{r t}
$$

- If the population doubles in 25 minutes, then

$$
P(25)=200,000=100,000 e^{25 r}
$$

- Dividing by 100,000 and taking the logarithm of both sides

$$
\ln (2)=25 r
$$

## Example 2: Malthusian Growth

Solution: The general solution satisfies

$$
P(t)=100,000 e^{r t}
$$

- If the population doubles in 25 minutes, then

$$
P(25)=200,000=100,000 e^{25 r}
$$

- Dividing by 100,000 and taking the logarithm of both sides

$$
\ln (2)=25 r
$$

- The growth rate constant is $r=0.0277$


## Example 2: Malthusian Growth

Solution: The general solution satisfies

$$
P(t)=100,000 e^{r t}
$$

- If the population doubles in 25 minutes, then

$$
P(25)=200,000=100,000 e^{25 r}
$$

- Dividing by 100,000 and taking the logarithm of both sides

$$
\ln (2)=25 r
$$

- The growth rate constant is $r=0.0277$
- The specific solution is given by

$$
P(t)=100,000 e^{0.0277 t}
$$

## Example 2: Malthusian Growth

Solution: The general solution satisfies

$$
P(t)=100,000 e^{r t}
$$

- If the population doubles in 25 minutes, then

$$
P(25)=200,000=100,000 e^{25 r}
$$

- Dividing by 100,000 and taking the logarithm of both sides

$$
\ln (2)=25 r
$$

- The growth rate constant is $r=0.0277$
- The specific solution is given by

$$
P(t)=100,000 e^{0.0277 t}
$$

- The population after one hour is

$$
P(60)=100,000 e^{0.0277(60)}=527,803
$$

## Applications of Differential Equations

Radioactive Decay: Let $R(t)$ be the amount of a radioactive substance

## Applications of Differential Equations

Radioactive Decay: Let $R(t)$ be the amount of a radioactive substance

- Radioactive materials are often used in biological experiments and for medical applications


## Applications of Differential Equations

Radioactive Decay: Let $R(t)$ be the amount of a radioactive substance

- Radioactive materials are often used in biological experiments and for medical applications
- Radioactive elements transition through decay into another state at a rate proportional to the amount of radioactive material present


## Applications of Differential Equations

Radioactive Decay: Let $R(t)$ be the amount of a radioactive substance

- Radioactive materials are often used in biological experiments and for medical applications
- Radioactive elements transition through decay into another state at a rate proportional to the amount of radioactive material present
- The differential equation is

$$
\frac{d R(t)}{d t}=-k R(t) \quad \text { with } \quad R(0)=R_{0}
$$

## Applications of Differential Equations

Radioactive Decay: Let $R(t)$ be the amount of a radioactive substance

- Radioactive materials are often used in biological experiments and for medical applications
- Radioactive elements transition through decay into another state at a rate proportional to the amount of radioactive material present
- The differential equation is

$$
\frac{d R(t)}{d t}=-k R(t) \quad \text { with } \quad R(0)=R_{0}
$$

- Like the Malthusian growth model, this has an exponential solution

$$
R(t)=R_{0} e^{-k t}
$$

## Applications of Differential Equations

Harmonic Oscillator: A Hooke's law spring exerts a force that is proportional to the displacement of the spring

## Applications of Differential Equations

Harmonic Oscillator: A Hooke's law spring exerts a force that is proportional to the displacement of the spring

- Newton's law of motion: Mass times the acceleration equals the force acting on the mass


## Applications of Differential Equations

Harmonic Oscillator: A Hooke's law spring exerts a force that is proportional to the displacement of the spring

- Newton's law of motion: Mass times the acceleration equals the force acting on the mass
- Applied to biological phenomena


## Applications of Differential Equations

Harmonic Oscillator: A Hooke's law spring exerts a force that is proportional to the displacement of the spring

- Newton's law of motion: Mass times the acceleration equals the force acting on the mass
- Applied to biological phenomena
- Vibrating cilia in ears


## Applications of Differential Equations

Harmonic Oscillator: A Hooke's law spring exerts a force that is proportional to the displacement of the spring

- Newton's law of motion: Mass times the acceleration equals the force acting on the mass
- Applied to biological phenomena
- Vibrating cilia in ears
- Stretching of actin filaments in muscle fibers


## Applications of Differential Equations

Harmonic Oscillator: A Hooke's law spring exerts a force that is proportional to the displacement of the spring

- Newton's law of motion: Mass times the acceleration equals the force acting on the mass
- Applied to biological phenomena
- Vibrating cilia in ears
- Stretching of actin filaments in muscle fibers
- The simplest spring-mass problem is

$$
m y^{\prime \prime}=-c y \quad \text { or } \quad y^{\prime \prime}+k^{2} y=0
$$

## Applications of Differential Equations

Harmonic Oscillator: A Hooke's law spring exerts a force that is proportional to the displacement of the spring

- Newton's law of motion: Mass times the acceleration equals the force acting on the mass
- Applied to biological phenomena
- Vibrating cilia in ears
- Stretching of actin filaments in muscle fibers
- The simplest spring-mass problem is

$$
m y^{\prime \prime}=-c y \quad \text { or } \quad y^{\prime \prime}+k^{2} y=0
$$

- The general solution is

$$
y(t)=c_{1} \cos (k t)+c_{2} \sin (k t)
$$

where $c_{1}$ and $c_{2}$ are arbitrary constants

## Applications of Differential Equations

Swinging Pendulum: A pendulum is a mass attached at one point so that it swings freely under the influence of gravity

## Applications of Differential Equations

Swinging Pendulum: A pendulum is a mass attached at one point so that it swings freely under the influence of gravity

Newton's law of motion (ignoring resistance) gives the differential equation

$$
m y^{\prime \prime}+g \sin (y)=0
$$

where $y$ is the angle of the pendulum, $m$ is the mass of the bob of the pendulum, and $g$ is the gravitational constant

## Applications of Differential Equations

Swinging Pendulum: A pendulum is a mass attached at one point so that it swings freely under the influence of gravity

Newton's law of motion (ignoring resistance) gives the differential equation

$$
m y^{\prime \prime}+g \sin (y)=0
$$

where $y$ is the angle of the pendulum, $m$ is the mass of the bob of the pendulum, and $g$ is the gravitational constant

This problem does not have an easily expressible solution

## Applications of Differential Equations

Logistic Growth: Most populations are limited by food, space, or waste build-up, thus, cannot continue to grow according to Malthusian growth

## Applications of Differential Equations

Logistic Growth: Most populations are limited by food, space, or waste build-up, thus, cannot continue to grow according to Malthusian growth

- The Logistic growth model has a Malthusian growth term and a term limiting growth due to crowding


## Applications of Differential Equations

Logistic Growth: Most populations are limited by food, space, or waste build-up, thus, cannot continue to grow according to Malthusian growth

- The Logistic growth model has a Malthusian growth term and a term limiting growth due to crowding
- The differential equation is

$$
\frac{d P}{d t}=r P\left(1-\frac{P}{M}\right)
$$

## Applications of Differential Equations

Logistic Growth: Most populations are limited by food, space, or waste build-up, thus, cannot continue to grow according to Malthusian growth

- The Logistic growth model has a Malthusian growth term and a term limiting growth due to crowding
- The differential equation is

$$
\frac{d P}{d t}=r P\left(1-\frac{P}{M}\right)
$$

- $P$ is the population, $r$ is the Malthusian rate of growth, and $M$ is the carrying capacity of the population


## Applications of Differential Equations

Logistic Growth: Most populations are limited by food, space, or waste build-up, thus, cannot continue to grow according to Malthusian growth

- The Logistic growth model has a Malthusian growth term and a term limiting growth due to crowding
- The differential equation is

$$
\frac{d P}{d t}=r P\left(1-\frac{P}{M}\right)
$$

- $P$ is the population, $r$ is the Malthusian rate of growth, and $M$ is the carrying capacity of the population
- We solve this problem later in the semester


## Applications of Differential Equations

The van der Pol Oscillator: In electrical circuits, diodes show a rapid rise in current, leveling of the current, then a steep decline

## Applications of Differential Equations

The van der Pol Oscillator: In electrical circuits, diodes show a rapid rise in current, leveling of the current, then a steep decline

- Biological applications include a similar approximation for nerve impulses


## Applications of Differential Equations

The van der Pol Oscillator: In electrical circuits, diodes show a rapid rise in current, leveling of the current, then a steep decline

- Biological applications include a similar approximation for nerve impulses
- The van der Pol Oscillator satisfies the differential equation

$$
v^{\prime \prime}+a\left(v^{2}-1\right) v^{\prime}+v=b
$$

## Applications of Differential Equations

The van der Pol Oscillator: In electrical circuits, diodes show a rapid rise in current, leveling of the current, then a steep decline

- Biological applications include a similar approximation for nerve impulses
- The van der Pol Oscillator satisfies the differential equation

$$
v^{\prime \prime}+a\left(v^{2}-1\right) v^{\prime}+v=b
$$

- $v$ is the voltage of the system, and $a$ and $b$ are constants


## Applications of Differential Equations

Lotka-Volterra - Predator and Prey Model: Model for studying the dynamics of predator and prey interacting populations

## Applications of Differential Equations

Lotka-Volterra - Predator and Prey Model: Model for studying the dynamics of predator and prey interacting populations

- Model for the population dynamics when one predator species and one prey species are tightly interconnected in an ecosystem


## Applications of Differential Equations

Lotka-Volterra - Predator and Prey Model: Model for studying the dynamics of predator and prey interacting populations

- Model for the population dynamics when one predator species and one prey species are tightly interconnected in an ecosystem
- System of differential equations

$$
\begin{aligned}
x^{\prime} & =a x-b x y \\
y^{\prime} & =-c y+d x y
\end{aligned}
$$

## Applications of Differential Equations

Lotka-Volterra - Predator and Prey Model: Model for studying the dynamics of predator and prey interacting populations

- Model for the population dynamics when one predator species and one prey species are tightly interconnected in an ecosystem
- System of differential equations

$$
\begin{aligned}
x^{\prime} & =a x-b x y \\
y^{\prime} & =-c y+d x y
\end{aligned}
$$

- $x$ is the prey species, and $y$ is the predator species


## Applications of Differential Equations

Lotka-Volterra - Predator and Prey Model: Model for studying the dynamics of predator and prey interacting populations

- Model for the population dynamics when one predator species and one prey species are tightly interconnected in an ecosystem
- System of differential equations

$$
\begin{aligned}
x^{\prime} & =a x-b x y \\
y^{\prime} & =-c y+d x y
\end{aligned}
$$

- $x$ is the prey species, and $y$ is the predator species
- No explicit solution, but will study its behavior


## Applications of Differential Equations

Forced Spring-Mass Problem with Damping: An extension of the spring-mass problem that includes viscous-damping caused by resistance to the motion and an external forcing function that is applied to the mass

## Applications of Differential Equations

Forced Spring-Mass Problem with Damping: An extension of the spring-mass problem that includes viscous-damping caused by resistance to the motion and an external forcing function that is applied to the mass

- The model is given by

$$
m y^{\prime \prime}+c y^{\prime}+k y=F(t)
$$

## Applications of Differential Equations

Forced Spring-Mass Problem with Damping: An extension of the spring-mass problem that includes viscous-damping caused by resistance to the motion and an external forcing function that is applied to the mass

- The model is given by

$$
m y^{\prime \prime}+c y^{\prime}+k y=F(t)
$$

- $y$ is the position of the mass
- $m$ is the mass of the object
- $c$ is the damping coefficient
- $k$ is the spring constant
- $F(t)$ is an externally applied force


## Applications of Differential Equations

Forced Spring-Mass Problem with Damping: An extension of the spring-mass problem that includes viscous-damping caused by resistance to the motion and an external forcing function that is applied to the mass

- The model is given by

$$
m y^{\prime \prime}+c y^{\prime}+k y=F(t)
$$

- $y$ is the position of the mass
- $m$ is the mass of the object
- $c$ is the damping coefficient
- $k$ is the spring constant
- $F(t)$ is an externally applied force
- There are techniques for solving this


## Applications of Differential Equations

Classification for Types of Differential Equations: Order of a Differential Equation

## Applications of Differential Equations

## Classification for Types of Differential Equations: Order of a Differential Equation

- The order of a differential equation is determined by the highest derivative in the differential equation


## Applications of Differential Equations

## Classification for Types of Differential Equations: Order of a Differential Equation

- The order of a differential equation is determined by the highest derivative in the differential equation
- Harmonic oscillator, swinging-pendulum, van der Pol oscillator, and forced spring mass problem are $2^{\text {nd }}$ order differential equations


## Applications of Differential Equations

## Classification for Types of Differential Equations: Order of a Differential Equation

- The order of a differential equation is determined by the highest derivative in the differential equation
- Harmonic oscillator, swinging-pendulum, van der Pol oscillator, and forced spring mass problem are $2^{\text {nd }}$ order differential equations
- Malthusian and logistic growth and radioactive decay are $1^{\text {st }}$ order differential equations


## Applications of Differential Equations

## Classification for Types of Differential Equations: Order of a Differential Equation

- The order of a differential equation is determined by the highest derivative in the differential equation
- Harmonic oscillator, swinging-pendulum, van der Pol oscillator, and forced spring mass problem are $2^{\text {nd }}$ order differential equations
- Malthusian and logistic growth and radioactive decay are $1^{\text {st }}$ order differential equations
- Lotka-Volterra model is a $1^{\text {st }}$ order system of differential equations


## Applications of Differential Equations

Classification for Types of Differential Equations: Linear and Nonlinear Differential Equations

## Applications of Differential Equations

## Classification for Types of Differential Equations: Linear and Nonlinear Differential Equations

- A differential equation is linear if the unknown dependent variable and its derivatives only appear in a linear manner


## Applications of Differential Equations

## Classification for Types of Differential Equations: Linear and Nonlinear Differential Equations

- A differential equation is linear if the unknown dependent variable and its derivatives only appear in a linear manner
- The Malthusian growth, radioactive decay, harmonic oscillator, and forced spring mass problem are linear differential equations


## Applications of Differential Equations

## Classification for Types of Differential Equations: Linear and Nonlinear Differential Equations

- A differential equation is linear if the unknown dependent variable and its derivatives only appear in a linear manner
- The Malthusian growth, radioactive decay, harmonic oscillator, and forced spring mass problem are linear differential equations
- The swinging pendulum, van der Pol oscillator, logistic growth, and Lotka-Volterra model are nonlinear differential equations


## Spring-Mass Problem

Spring-Mass Problem: Assume a mass attached to a spring without resistance satisfies the second order linear differential equation

$$
y^{\prime \prime}(t)+5 y(t)=0
$$

Skip Example

## Spring-Mass Problem

Spring-Mass Problem: Assume a mass attached to a spring without resistance satisfies the second order linear differential equation

$$
y^{\prime \prime}(t)+5 y(t)=0
$$

## Skip Example

Show that two of the solutions to this differential equation are given by

$$
y_{1}(t)=3 \sin (\sqrt{5} t) \quad \text { and } \quad y_{2}(t)=2 \cos (\sqrt{5} t)
$$

## Spring-Mass Problem

## Solution: Undamped spring-mass problem

## Spring-Mass Problem

Solution: Undamped spring-mass problem

- Take two derivatives of $y_{1}(t)=3 \sin (\sqrt{5} t)$

$$
y_{1}^{\prime}(t)=3 \sqrt{5} \cos (\sqrt{5} t) \quad \text { and } \quad y_{1}^{\prime \prime}(t)=-15 \sin (\sqrt{5} t)
$$

## Spring-Mass Problem

Solution: Undamped spring-mass problem

- Take two derivatives of $y_{1}(t)=3 \sin (\sqrt{5} t)$

$$
y_{1}^{\prime}(t)=3 \sqrt{5} \cos (\sqrt{5} t) \quad \text { and } \quad y_{1}^{\prime \prime}(t)=-15 \sin (\sqrt{5} t)
$$

- Substituting into the differential equation

$$
y_{1}^{\prime \prime}+5 y_{1}=-15 \sin (\sqrt{5} t)+5(3 \sin (\sqrt{5} t))=0
$$

## Spring-Mass Problem

Solution: Undamped spring-mass problem

- Take two derivatives of $y_{1}(t)=3 \sin (\sqrt{5} t)$

$$
y_{1}^{\prime}(t)=3 \sqrt{5} \cos (\sqrt{5} t) \quad \text { and } \quad y_{1}^{\prime \prime}(t)=-15 \sin (\sqrt{5} t)
$$

- Substituting into the differential equation

$$
y_{1}^{\prime \prime}+5 y_{1}=-15 \sin (\sqrt{5} t)+5(3 \sin (\sqrt{5} t))=0
$$

- Take two derivatives of $y_{2}(t)=2 \cos (\sqrt{5} t)$

$$
y_{2}^{\prime}(t)=-2 \sqrt{5} \sin (\sqrt{5} t) \quad \text { and } \quad y_{2}^{\prime \prime}(t)=-10 \cos (\sqrt{5} t)
$$

## Spring-Mass Problem

Solution: Undamped spring-mass problem

- Take two derivatives of $y_{1}(t)=3 \sin (\sqrt{5} t)$

$$
y_{1}^{\prime}(t)=3 \sqrt{5} \cos (\sqrt{5} t) \quad \text { and } \quad y_{1}^{\prime \prime}(t)=-15 \sin (\sqrt{5} t)
$$

- Substituting into the differential equation

$$
y_{1}^{\prime \prime}+5 y_{1}=-15 \sin (\sqrt{5} t)+5(3 \sin (\sqrt{5} t))=0
$$

- Take two derivatives of $y_{2}(t)=2 \cos (\sqrt{5} t)$

$$
y_{2}^{\prime}(t)=-2 \sqrt{5} \sin (\sqrt{5} t) \quad \text { and } \quad y_{2}^{\prime \prime}(t)=-10 \cos (\sqrt{5} t)
$$

- Substituting into the differential equation

$$
y_{2}^{\prime \prime}+5 y_{2}=-10 \cos (\sqrt{5} t)+5(2 \cos (\sqrt{5} t))=0
$$

## Damped Spring-Mass Problem

Damped Spring-Mass Problem: Assume a mass attached to a spring with resistance satisfies the second order linear differential equation

$$
y^{\prime \prime}(t)+2 y^{\prime}(t)+5 y(t)=0
$$

## Skip Example

## Damped Spring-Mass Problem

Damped Spring-Mass Problem: Assume a mass attached to a spring with resistance satisfies the second order linear differential equation

$$
y^{\prime \prime}(t)+2 y^{\prime}(t)+5 y(t)=0
$$

## Skip Example

Show that one solution to this differential equation is

$$
y_{1}(t)=2 e^{-t} \sin (2 t)
$$

## Damped Spring-Mass Problem

## Solution: Damped spring-mass problem

## Damped Spring-Mass Problem

Solution: Damped spring-mass problem

- The $1^{s t}$ derivative of $y_{1}(t)=2 e^{-t} \sin (2 t)$

$$
y_{1}^{\prime}(t)=2 e^{-t}(2 \cos (2 t))-2 e^{-t} \sin (2 t)=2 e^{-t}(2 \cos (2 t)-\sin (2 t))
$$

## Damped Spring-Mass Problem

Solution: Damped spring-mass problem

- The $1^{\text {st }}$ derivative of $y_{1}(t)=2 e^{-t} \sin (2 t)$

$$
y_{1}^{\prime}(t)=2 e^{-t}(2 \cos (2 t))-2 e^{-t} \sin (2 t)=2 e^{-t}(2 \cos (2 t)-\sin (2 t))
$$

- The $2^{\text {nd }}$ derivative of $y_{1}(t)=2 e^{-t} \sin (2 t)$

$$
\begin{aligned}
y_{1}^{\prime \prime}(t) & =2 e^{-t}(-4 \sin (2 t)-2 \cos (2 t))-2 e^{-t}(2 \cos (2 t)-\sin (2 t)) \\
& =-2 e^{-t}(4 \cos (2 t)+3 \sin (2 t))
\end{aligned}
$$

## Damped Spring-Mass Problem

Solution: Damped spring-mass problem

- The $1^{s t}$ derivative of $y_{1}(t)=2 e^{-t} \sin (2 t)$

$$
y_{1}^{\prime}(t)=2 e^{-t}(2 \cos (2 t))-2 e^{-t} \sin (2 t)=2 e^{-t}(2 \cos (2 t)-\sin (2 t))
$$

- The $2^{\text {nd }}$ derivative of $y_{1}(t)=2 e^{-t} \sin (2 t)$

$$
\begin{aligned}
y_{1}^{\prime \prime}(t) & =2 e^{-t}(-4 \sin (2 t)-2 \cos (2 t))-2 e^{-t}(2 \cos (2 t)-\sin (2 t)) \\
& =-2 e^{-t}(4 \cos (2 t)+3 \sin (2 t))
\end{aligned}
$$

- Substitute into the spring-mass problem

$$
\begin{aligned}
y_{1}^{\prime \prime}+2 y_{1}^{\prime}+5 y= & -2 e^{-t}(4 \cos (2 t)+3 \sin (2 t)) \\
& +2\left(2 e^{-t}(2 \cos (2 t)-\sin (2 t))\right)+5\left(2 e^{-t} \sin (2 t)\right) \\
= & 0
\end{aligned}
$$

## Damped Spring-Mass Problem

## Graph of Damped Oscillator

Damped Spring $-\mathrm{y}(\mathrm{t})=2 \mathrm{e}^{-\mathrm{t}} \sin (2 \mathrm{t})$


## Evaporation Example

Evaporation Example: Animals lose moisture proportional to their surface area

Skip Example

## Evaporation Example

Evaporation Example: Animals lose moisture proportional to their surface area

## Skip Example

- If $V(t)$ is the volume of water in the animal, then the moisture loss satisfies the differential equation

$$
\frac{d V}{d t}=-0.03 V^{2 / 3}, \quad V(0)=8 \mathrm{~cm}^{3}
$$

## Evaporation Example

Evaporation Example: Animals lose moisture proportional to their surface area

## Skip Example

- If $V(t)$ is the volume of water in the animal, then the moisture loss satisfies the differential equation

$$
\frac{d V}{d t}=-0.03 V^{2 / 3}, \quad V(0)=8 \mathrm{~cm}^{3}
$$

- The initial amount of water is $8 \mathrm{~cm}^{3}$ with $t$ in days


## Evaporation Example

Evaporation Example: Animals lose moisture proportional to their surface area

## Skip Example

- If $V(t)$ is the volume of water in the animal, then the moisture loss satisfies the differential equation

$$
\frac{d V}{d t}=-0.03 V^{2 / 3}, \quad V(0)=8 \mathrm{~cm}^{3}
$$

- The initial amount of water is $8 \mathrm{~cm}^{3}$ with $t$ in days
- Verify the solution is

$$
V(t)=(2-0.01 t)^{3}
$$

## Evaporation Example

Evaporation Example: Animals lose moisture proportional to their surface area

## Skip Example

- If $V(t)$ is the volume of water in the animal, then the moisture loss satisfies the differential equation

$$
\frac{d V}{d t}=-0.03 V^{2 / 3}, \quad V(0)=8 \mathrm{~cm}^{3}
$$

- The initial amount of water is $8 \mathrm{~cm}^{3}$ with $t$ in days
- Verify the solution is

$$
V(t)=(2-0.01 t)^{3}
$$

- Determine when the animal becomes totally dessicated according to this model


## Evaporation Example

Evaporation Example: Animals lose moisture proportional to their surface area

## Skip Example

- If $V(t)$ is the volume of water in the animal, then the moisture loss satisfies the differential equation

$$
\frac{d V}{d t}=-0.03 V^{2 / 3}, \quad V(0)=8 \mathrm{~cm}^{3}
$$

- The initial amount of water is $8 \mathrm{~cm}^{3}$ with $t$ in days
- Verify the solution is

$$
V(t)=(2-0.01 t)^{3}
$$

- Determine when the animal becomes totally dessicated according to this model
- Graph the solution


## Evaporation Example

Solution: Show $V(t)=(2-0.01 t)^{3}$ satisfies

$$
\frac{d V}{d t}=-0.03 V^{2 / 3}, \quad V(0)=8 \mathrm{~cm}^{3}
$$

## Evaporation Example

Solution: Show $V(t)=(2-0.01 t)^{3}$ satisfies

$$
\frac{d V}{d t}=-0.03 V^{2 / 3}, \quad V(0)=8 \mathrm{~cm}^{3}
$$

- $V(0)=(2-0.01(0))^{3}=8$, so satisfies the initial condition


## Evaporation Example

Solution: Show $V(t)=(2-0.01 t)^{3}$ satisfies

$$
\frac{d V}{d t}=-0.03 V^{2 / 3}, \quad V(0)=8 \mathrm{~cm}^{3}
$$

- $V(0)=(2-0.01(0))^{3}=8$, so satisfies the initial condition
- Differentiate $V(t)$,

$$
\frac{d V}{d t}=3(2-0.01 t)^{2}(-0.01)=-0.03(2-0.01 t)^{2}
$$

## Evaporation Example

Solution: Show $V(t)=(2-0.01 t)^{3}$ satisfies

$$
\frac{d V}{d t}=-0.03 V^{2 / 3}, \quad V(0)=8 \mathrm{~cm}^{3}
$$

- $V(0)=(2-0.01(0))^{3}=8$, so satisfies the initial condition
- Differentiate $V(t)$,

$$
\frac{d V}{d t}=3(2-0.01 t)^{2}(-0.01)=-0.03(2-0.01 t)^{2}
$$

- But $V^{2 / 3}(t)=(2-0.01 t)^{2}$, so

$$
\frac{d V}{d t}=-0.03 V^{2 / 3}
$$

## Evaporation Example

Solution (cont): Find the time of total dessication

## Evaporation Example

Solution (cont): Find the time of total dessication

- Must solve

$$
V(t)=(2-0.01 t)^{3}=0
$$

## Evaporation Example

Solution (cont): Find the time of total dessication

- Must solve

$$
V(t)=(2-0.01 t)^{3}=0
$$

- Thus,

$$
2-0.01 t=0 \quad \text { or } \quad t=200
$$

## Evaporation Example

Solution (cont): Find the time of total dessication

- Must solve

$$
V(t)=(2-0.01 t)^{3}=0
$$

- Thus,

$$
2-0.01 t=0 \quad \text { or } \quad t=200
$$

- It takes 200 days for complete dessication


## Evaporation Example

Graph of Dessication


## Nonautonomous Example

Nonautonomous Example: Consider the nonautonomous differential equation with initial condition (Initial Value Problem):

$$
\frac{d y}{d t}=-t y^{2}, \quad y(0)=2
$$

## Nonautonomous Example

Nonautonomous Example: Consider the nonautonomous differential equation with initial condition (Initial Value Problem):

$$
\frac{d y}{d t}=-t y^{2}, \quad y(0)=2
$$

- Show that the solution to this differential equation, including the initial condition, is

$$
y(t)=\frac{2}{t^{2}+1}
$$

## Nonautonomous Example

Nonautonomous Example: Consider the nonautonomous differential equation with initial condition (Initial Value Problem):

$$
\frac{d y}{d t}=-t y^{2}, \quad y(0)=2
$$

- Show that the solution to this differential equation, including the initial condition, is

$$
y(t)=\frac{2}{t^{2}+1}
$$

- Graph of the solution


## Nonautonomous Example

Solution: Consider the solution

$$
y(t)=\frac{2}{t^{2}+1}=2\left(t^{2}+1\right)^{-1}
$$

## Nonautonomous Example

Solution: Consider the solution

$$
y(t)=\frac{2}{t^{2}+1}=2\left(t^{2}+1\right)^{-1}
$$

- The initial condition is

$$
y(0)=\frac{2}{0^{2}+1}=2
$$

## Nonautonomous Example

Solution: Consider the solution

$$
y(t)=\frac{2}{t^{2}+1}=2\left(t^{2}+1\right)^{-1}
$$

- The initial condition is

$$
y(0)=\frac{2}{0^{2}+1}=2
$$

- Differentiate $y(t)$,

$$
\frac{d y}{d t}=-2\left(t^{2}+1\right)^{-2}(2 t)=-4 t\left(t^{2}+1\right)^{-2}
$$

## Nonautonomous Example

Solution: Consider the solution

$$
y(t)=\frac{2}{t^{2}+1}=2\left(t^{2}+1\right)^{-1}
$$

- The initial condition is

$$
y(0)=\frac{2}{0^{2}+1}=2
$$

- Differentiate $y(t)$,

$$
\frac{d y}{d t}=-2\left(t^{2}+1\right)^{-2}(2 t)=-4 t\left(t^{2}+1\right)^{-2}
$$

- However,

$$
-t y^{2}=-t\left(2\left(t^{2}+1\right)^{-1}\right)^{2}=-4 t\left(t^{2}+1\right)^{-2}
$$

## Nonautonomous Example

Solution: Consider the solution

$$
y(t)=\frac{2}{t^{2}+1}=2\left(t^{2}+1\right)^{-1}
$$

- The initial condition is

$$
y(0)=\frac{2}{0^{2}+1}=2
$$

- Differentiate $y(t)$,

$$
\frac{d y}{d t}=-2\left(t^{2}+1\right)^{-2}(2 t)=-4 t\left(t^{2}+1\right)^{-2}
$$

- However,

$$
-t y^{2}=-t\left(2\left(t^{2}+1\right)^{-1}\right)^{2}=-4 t\left(t^{2}+1\right)^{-2}
$$

- Thus, the differential equation is satisfied


## Nonautonomous Example

## Solution of Nonautonomous Differentiation Equation



