Introduction Applications of Differential Equations	Introduction Applications of Differential Equations		
	Outline		
Calculus for the Life Sciences II Lecture Notes – Introduction to Differential Equations	1 Introduction		
Joseph M. Mahaffy, $\langle \texttt{mahaffy@math.sdsu.edu} \rangle$	 • What is a Differential Equation? • Malthusian Growth • Example 		
Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego, CA 92182-7720	 Applications of Differential Equations Spring Examples Evaporation Example Nonautonomous Example 		
http://www-rohan.sdsu.edu/~jmahaffy Fall 2012			
Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)	Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) — (2/34)		
Introduction Applications of Differential Equations	Introduction Applications of Differential Equations Malthusian Growth		
Introduction	What is a Differential Equation?		
	What is a Differential Equation?		
IntroductionDifferential equations frequently arise in modeling situations	 A differential equation is any equation of some unknown function that involves some derivative of the unknown function The classical example is Newton's Law of motion 		
 They describe population growth, chemical reactions, heat exchange, motion, and many other applications Differential equations are continuous analogs of discrete dynamical systems 			
	 In biology, a differential equation describes a growth rate, a reaction rate, or the change in some physiological state 		
SDSU			

What is a Differential Equation Malthusian Growth

Malthusian Growth

Discrete Malthusian Growth Population, P_n , at time nwith growth rate, r

$$P_{n+1} = P_n + rP_n$$

Rearrange the discrete Malthusian growth model

$$P_{n+1} - P_n = rP_n$$

The change in population between $(n+1)^{st}$ time and the n^{th} time is proportional to the population at the n^{th} time

What is a Differential Equation Malthusian Growth

Malthusian Growth

Malthusian Growth (cont) Let P(t) be the population at time t

- Assume that r is the rate of change of the population per unit time per animal in the population
- Let Δt be a small interval of time, then the change in population between t and $t + \Delta t$, satisfies

$$P(t + \Delta t) - P(t) = \Delta t \cdot rP(t)$$

- Biologically, this equation says that the change (difference) in the population over a small period of time is found by taking the rate of growth times the population times the interval of time Δt
- The equation above can be rearranged to give

$$\frac{P(t + \Delta t) - P(t)}{\Delta t} = rP(t)$$

SDSU

$\mathbf{Joseph} \ \mathbf{M.} \ \mathbf{Mahaffy}, \ \langle \texttt{mahaffy}\texttt{@math.sdsu.edu} angle$	-(5/34)	${f Joseph}$ M. Mahaffy, $\langle { t mahaffy@math.sdsu.edu} angle$	-(6/34)
Introduction Applications of Differential Equations	What is a Differential Equation? Malthusian Growth Example	Introduction Applications of Differential Equations	What is a Differential Equation? Malthusian Growth Example
Continuous Malthusian Growth		Continuous Malthusian Growth	
		Solution of Malthusian Grov	wth Model The Malthusian

SDSU

5050

Continuous Malthusian Growth The discrete model was given by

$$\frac{P(t + \Delta t) - P(t)}{\Delta t} = rP(t)$$

- The right hand side of the equation should remind you of the definition of the derivative
- Take the limit of $\Delta t \to 0$, so

$$\lim_{\Delta t \to 0} \frac{P(t + \Delta t) - P(t)}{\Delta t} = \frac{dP(t)}{dt} = rP(t)$$

• This is the continuous Malthusian growth model

growth model

$$\frac{dP(t)}{dt} = rP(t)$$

- The rate of change of a population is proportional to the population
- Let c be an arbitrary constant, so try a solution of the form

$$P(t) = ce^{rt}$$

• Differentiating

$$\frac{dP(t)}{dt} = cre^{rt},$$

which is rP(t), so satisfies the differential equation

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) (7/34)

What is a Differential Equation? Malthusian Growth

Continuous Malthusian Growth

Solution of Malthusian Growth Model (cont) The Malthusian growth model satisfies

 $P(t) = ce^{rt}$

• With the initial condition, $P(0) = P_0$, then the unique solution is

$$P(t) = P_0 e^{rt}$$

• Malthusian growth is often called exponential growth

What is a Differential Equation? Malthusian Growth Example

Example: Malthusian Growth

Example: Malthusian Growth Consider the Malthusian growth model

$$\frac{dP(t)}{dt} = 0.02 P(t)$$
 with $P(0) = 100$

Skip Exampl

- Find the solution
- Determine how long it takes for this population to double

SDSU	SDSU		
Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) - (9/34)	Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)		
Introduction Applications of Differential Equations What is a Differential Equation? Malthusian Growth Example	Introduction Applications of Differential Equations Malthusian Growth Example		
Example: Malthusian Growth 2	Example 2: Malthusian Growth 1		
Solution: The solution is given by			
$P(t) = 100 e^{0.02t}$	Example 2: Suppose that a culture of <i>Escherichia coli</i> is growing according to the Malthusian growth model		
We can confirm this by computing	dP(t) $P(t)$ with $P(0)$ 100,000		
$\frac{dP}{dt} = 0.02(100e^{0.02t}) = 0.02P(t),$	$\frac{dP(t)}{dt} = rP(t) \text{with} P(0) = 100,000$ Skip Example • Assume the population doubles in 25 minutes • Find the growth rate constant and the solution to this differential equation		
so this solution satisfies the differential equation and the initial			
condition The population doubles when			
$200 = 100 e^{0.02t}$	• Compute the population after one hour		
$200 = 100 e^{0.02t}$ $0.02t = \ln(2) \text{or} t = 50 \ln(2) \approx 34.66$	5050		

What is a Differential Equation? Malthusian Growth Example

Example 2: Malthusian Growth

Solution: The general solution satisfies

 $P(t) = 100,000 e^{rt}$

• If the population doubles in 25 minutes, then

$$P(25) = 200,000 = 100,000 e^{25r}$$

• Dividing by 100,000 and taking the logarithm of both sides

 $\ln(2) = 25 r$

- The growth rate constant is r = 0.0277
- The specific solution is given by

$$P(t) = 100,000 \, e^{0.0277t}$$

• The population after one hour is

Joseph M. Mahaffy, (mahaffy@math

$$P(60) = 100,000e^{0.0277(60)} = 527,803$$

Applications of Differential Equations

Radioactive Decay: Let R(t) be the amount of a radioactive substance

- Radioactive materials are often used in biological experiments and for medical applications
- Radioactive elements transition through decay into another state at a rate proportional to the amount of radioactive material present
- The differential equation is

Mahaffy

$$\frac{dR(t)}{dt} = -k R(t) \quad \text{with} \quad R(0) = R_0$$

• Like the Malthusian growth model, this has an exponential solution

 $R(t) = R_0 e^{-kt}$

SDSU

Introduction Applications of Differential EquationsSpring Examples Evaporation Example Nonautonomous ExampleApplications of Differential Equations2	Introduction Applications of Differential EquationsSpring Examples Evaporation Example Nonautonomous ExampleApplications of Differential Equations3
Harmonic Oscillator: A Hooke's law spring exerts a force that is proportional to the displacement of the spring • Newton's law of motion: Mass times the acceleration equals the force acting on the mass • Applied to biological phenomena • Vibrating cilia in ears • Stretching of actin filaments in muscle fibers • The simplest spring-mass problem is $my'' = -cy$ or $y'' + k^2y = 0$ • The general solution is $y(t) = c_1 \cos(kt) + c_2 \sin(kt),$	Swinging Pendulum: A pendulum is a mass attached at one point so that it swings freely under the influence of gravity Newton's law of motion (ignoring resistance) gives the differential equation $my'' + g\sin(y) = 0,$ where y is the angle of the pendulum, m is the mass of the bob of the pendulum, and g is the gravitational constant This problem does not have an easily expressible solution

SDSU

2

where c_1 and c_2 are arbitrary constants

SDSU

vaporation Example Nonautonomous Example

Applications of Differential Equations

Logistic Growth: Most populations are limited by food, space, or waste build-up, thus, cannot continue to grow according to Malthusian growth

- The Logistic growth model has a Malthusian growth term and a term limiting growth due to crowding
- The differential equation is

 $\frac{dP}{dt} = rP\left(1 - \frac{P}{M}\right)$

- P is the population, r is the Malthusian rate of growth, and M is the carrying capacity of the population
- We solve this problem later in the semester

Applications of Differential Equations

The van der Pol Oscillator: In electrical circuits, diodes show a rapid rise in current, leveling of the current, then a steep decline

- Biological applications include a similar approximation for nerve impulses
- The van der Pol Oscillator satisfies the differential equation

$$v'' + a(v^2 - 1)v' + v = b$$

• v is the voltage of the system, and a and b are constants

SDSU SDSU Joseph M. Mahaffy, $\langle mahaffy@math.sdsu.edu \rangle$ Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) (17/34)-(18/34)Evaporation Example Evaporation Example **Applications of Differential Equations** Applications of Differential Equations **Applications of Differential Equations** 6 **Applications of Differential Equations** 7Forced Spring-Mass Problem with Damping: An Lotka-Volterra – Predator and Prey Model: Model for extension of the spring-mass problem that includes studying the dynamics of predator and prey interacting viscous-damping caused by resistance to the motion and an

4

populations

- Model for the population dynamics when one predator species and one prey species are tightly interconnected in an ecosystem
- System of differential equations

$$x' = ax - bxy$$

$$y' = -cy + dxy$$

- x is the prev species, and y is the predator species
- No explicit solution, but will study its behavior

5050

• There are techniques for solving this

• y is the position of the mass • *m* is the mass of the object

• c is the damping coefficient • k is the spring constant

• The model is given by

5

• F(t) is an externally applied force

external forcing function that is applied to the mass

my'' + cy' + ky = F(t)

ring Examples Nonautonomous Example

Applications of Differential Equations

Classification for Types of Differential Equations: Order of a Differential Equation

- The order of a differential equation is determined by the highest derivative in the differential equation
 - Harmonic oscillator, swinging-pendulum, van der Pol oscillator, and forced spring mass problem are 2^{nd} order differential equations
 - Malthusian and logistic growth and radioactive decay are 1^{st} order differential equations
 - \bullet Lotka-Volterra model is a 1^{st} order system of differential equations

Applications of Differential Equations

Classification for Types of Differential Equations: Linear and Nonlinear Differential Equations

- A differential equation is *linear* if the unknown dependent variable and its derivatives only appear in a linear manner
 - The Malthusian growth, radioactive decay, harmonic oscillator, and forced spring mass problem are linear differential equations
 - The swinging pendulum, van der Pol oscillator, logistic growth, and Lotka-Volterra model are nonlinear differential equations

Joseph M. Mahaffy, $\langle mahaffy@math.sdsu.edu \rangle$ Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) (21/34)-(22/34)Spring Examples Spring Examples Evaporation Example Evaporation Example Applications of Differential Equations **Applications of Differential Equations** Nonautonomous Example Spring-Mass Problem Spring-Mass Problem 1 2Solution: Undamped spring-mass problem • Take two derivatives of $y_1(t) = 3\sin(\sqrt{5}t)$ **Spring-Mass Problem:** Assume a mass attached to a spring without resistance satisfies the second order linear differential

SDSU

8

equation

$$y''(t) + 5y(t) = 0$$

Show that two of the solutions to this differential equation are given by

$$y_1(t) = 3\sin\left(\sqrt{5}t\right)$$
 and $y_2(t) = 2\cos\left(\sqrt{5}t\right)$

$$y_1'(t) = 3\sqrt{5}\cos\left(\sqrt{5}t\right)$$
 and $y_1''(t) = -15\sin\left(\sqrt{5}t\right)$

• Substituting into the differential equation

$$y_1'' + 5y_1 = -15\sin(\sqrt{5}t) + 5(3\sin(\sqrt{5}t)) = 0$$

• Take two derivatives of $y_2(t) = 2\cos(\sqrt{5}t)$

$$y'_2(t) = -2\sqrt{5}\sin\left(\sqrt{5}t\right)$$
 and $y''_2(t) = -10\cos\left(\sqrt{5}t\right)$

• Substituting into the differential equation

$$y_{2}'' + 5y_{2} = -10\cos\left(\sqrt{5}t\right) + 5\left(2\cos\left(\sqrt{5}t\right)\right) = 0$$

5050

9

Spring Examples Evaporation Example Nonautonomous Example

Damped Spring-Mass Problem

Damped Spring-Mass Problem: Assume a mass attached to a spring with resistance satisfies the second order linear differential equation

$$y''(t) + 2y'(t) + 5y(t) = 0$$

Skip Example

Show that one solution to this differential equation is

$$y_1(t) = 2 e^{-t} \sin(2t)$$

Damped Spring-Mass Problem

Solution: Damped spring-mass problem

• The 1st derivative of $y_1(t) = 2e^{-t}\sin(2t)$

$$y_1'(t) = 2e^{-t}(2\cos(2t)) - 2e^{-t}\sin(2t) = 2e^{-t}(2\cos(2t) - \sin(2t))$$

Spring Examples

Nonautonomous Example

• The 2^{nd} derivative of $y_1(t) = 2e^{-t}\sin(2t)$

$$y_1''(t) = 2e^{-t}(-4\sin(2t) - 2\cos(2t)) - 2e^{-t}(2\cos(2t) - \sin(2t))$$

= $-2e^{-t}(4\cos(2t) + 3\sin(2t))$

• Substitute into the spring-mass problem

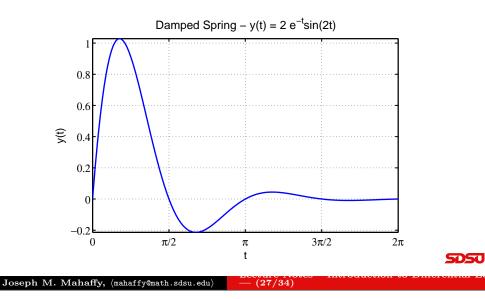
$$y_1'' + 2y_1' + 5y = -2e^{-t}(4\cos(2t) + 3\sin(2t)) + 2(2e^{-t}(2\cos(2t) - \sin(2t))) + 5(2e^{-t}\sin(2t)) = 0$$

SDSU

2

$\mathbf{Joseph~M.~Mahaffy},~ {\tt \langle mahaffy@math.sdsu.edu \rangle}$	-(25/34)	$\mathbf{Joseph~M.~Mahaffy},~ \texttt{(mahaffy@math.sdsu.edu)}$	-(26/34)
Introduction Applications of Differential Equations	Spring Examples Evaporation Example Nonautonomous Example	Introduction Applications of Differential Equations	Spring Examples Evaporation Example Nonautonomous Example
Damped Spring-Mass Probl	lem 3	Evaporation Example	1

Graph of Damped Oscillator



Evaporation Example: Animals lose moisture proportional to their surface area

Skip Example

• If V(t) is the volume of water in the animal, then the moisture loss satisfies the differential equation

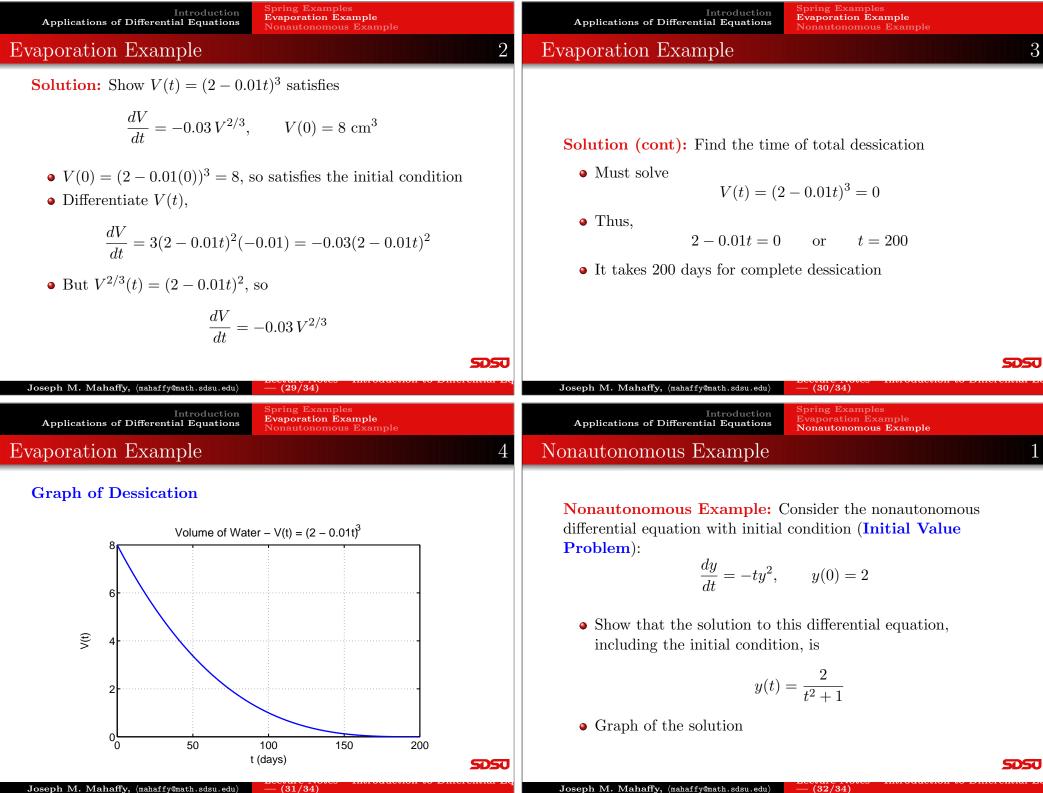
$$\frac{dV}{dt} = -0.03 V^{2/3}, \qquad V(0) = 8 \text{ cm}^3$$

- The initial amount of water is 8 cm^3 with t in days
- Verify the solution is

$$V(t) = (2 - 0.01t)^3$$

- Determine when the animal becomes totally dessicated according to this model
- Graph the solution

SDSU



Spring Examples Evaporation Example Nonautonomous Example

Solution: Consider the solution

$$y(t) = \frac{2}{t^2 + 1} = 2(t^2 + 1)^{-1}$$

• The initial condition is

$$y(0) = \frac{2}{0^2 + 1} = 2$$

• Differentiate y(t),

$$\frac{dy}{dt} = -2(t^2+1)^{-2}(2t) = -4t(t^2+1)^{-2}$$

• However,

$$-ty^2 = -t(2(t^2+1)^{-1})^2 = -4t(t^2+1)^{-2}$$

• Thus, the differential equation is satisfied

Joseph M. Mahaffy, $\langle mahaffy@math.sdsu.edu \rangle = (33/34)$

3

Nonautonomous Example

2

SDSU

Solution of Nonautonomous Differentiation Equation

