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Introduction

Introduction: Managing More Integrals

To date we have learned a collection of basic integrals
Polynomials
Power Law
Exponentials - ekt

Trig Functions - sin(kt) and cos(kt)
Integration by substitution allows a substitution that
reduces the integral to a simpler form
This is basically this inverse of the Chain Rule of
differentiation
Apply to models using separable differential equations

The logistic growth model
Model for motion of an object subject to gravity

Joseph M. Mahaffy, 〈mahaffy@math.sdsu.edu〉
Lecture Notes – Integration by Substitution
— (3/40)

Introduction
Logistic Growth Model for Yeast

Integration by Substitution
Return to Logistic Growth

Examples
Escape Velocity

Lake Pollution with Seasonal Flow

Logistic Growth Model for Yeast 1

Logistic Growth Model for Yeast: Model considers a
limited food source

After a lag period, the organisms begin growing according
to Malthusian growth

As the food source becomes limiting, the growth of the
organism slows and the population levels off
This behavior is modeled by adding a negative quadratic
term to the Malthusian growth model

dP

dt
= rP

(
1 − P

M

)
with P (0) = P0
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Logistic Growth Model for Yeast 2

Experiment: G. F. Gause (Struggle for Existence) studied
standard brewers yeast, Saccharomyces cerevisiae

S. cerevisiae placed in a closed vessel, where nutrient was
changed regularly (every 3 hours)
Simulates a constant source of nutrient

Time (hr) 0 1.5 9 10 18 18 23
Volume 0.37 1.63 6.2 8.87 10.66 10.97 12.5
Time (hr) 25.5 27 34 38 42 45.5 47
Volume 12.6 12.9 13.27 12.77 12.87 12.9 12.7
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Logistic Growth Model for Yeast 3

Graph of data and best fitting model
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Logistic Growth Model for Yeast 4

Model: The Logistic Growth Model that best fits the data
is

dP

dt
= 0.259 P

(
1 − p

12.7

)
, with P (0) = 1.23

How do we find the solution to this nonlinear differential
equation?
This is a separable equation
The integral for P involves two integration techniques
We’ll concentrate on the the integration by substitution
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Examples

Integration by Substitution

Integration by Substitution

Integration is the inverse of differentiation
Many functions that do not have an antiderivative
Integration by substitution extends the number of
integrable functions
This technique is the inverse of the chain rule of
differentiation
The substitution technique is to find a function that
reduces an integral to an easier form
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Examples

Example 1

Example 1: Let a be a constant and consider the integral∫
(x + a)ndx

Make the substitution u = x + a, and the derivative gives the
differentials du = dx, so

∫
(x + a)ndx =

∫
undu

=
un+1

n + 1
+ C

=
(x + a)n+1

n + 1
+ C
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Examples

Example 2

Example 2: Consider the integral∫
x e−x2

dx

Make the substitution u = −x2, and the derivative gives the
differentials du = −2x dx, so∫

x e−x2
dx =

∫
e−x2(−1

2

)
(−2x)dx

= −1
2

∫
eudu

= −1
2eu + C

= −1
2e−x2

+ C
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Examples

Example 3

Example 3: Consider the integral∫ (
x2 + 2x + 4

)3
(x + 1)dx

Make the substitution u = x2 + 2x + 4, and the derivative gives the
differentials du = (2x + 2)dx, so∫ (

x2 + 2x + 4
)3

(x + 1)dx = 1
2

∫ (
x2 + 2x + 4

)3
(2x + 2)dx

= 1
2

∫
u3du

= u4

8 + C

=

(
x2 + 2x + 4

)4

8
+ C
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Examples

Integration by Substitution

Integration by Substitution: What makes a good
substitution?

Choose u such that when u and du are substituted for the
expression of x under the integrand, the remaining integral
became of one of the basic integrals solved earlier
There are a few choices that are very natural for a
substitution

Let u be any expression of x in the exponent of the
exponential function e or the argument of any trigonometric
functions or the logarithm function
Let u be an expression of x inside parentheses raised to a
power, where you should be able to see the derivative of
that expression multiplying this expression to a power
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Return to Logistic Growth 1

Return to Logistic Growth: The Logistic Growth Model is

dP

dt
= rP

(
1 − P

M

)
= −rP

(
P

M
− 1

)
Separate Variables to give∫

dP

P
(

P
M − 1

) = −r

∫
dt

The integral on the right is very easy to solve

The integral on the left requires a technique from algebra
Fraction is split into two simple fractions (reverse of a
common denominator)

1
P

(
P
M − 1

) =
1
M(

P
M − 1

) − 1
P
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Return to Logistic Growth 2

Separated Differential Equation: From fractional form
above, write the integral as∫

dP

P
(

P
M − 1

) =
1
M

∫
dP(

P
M − 1

) −
∫

dP

P

One integral is easy ∫
dP

P
= ln |P | + C

For the other make the substitution u = P
M − 1, so du = dP

M

1
M

∫
dP(

P
M − 1

) =
∫

du

u
= ln |u| = ln

∣∣∣∣ P

M
− 1

∣∣∣∣
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Return to Logistic Growth 3

Separated Differential Equation:∫
dP

P
(

P
M − 1

) = −r

∫
dt = −rt + C

From results above

ln
∣∣∣∣ P

M
− 1

∣∣∣∣ − ln |P | = −rt + C

Thus,

ln

∣∣∣∣∣ P
M − 1

P

∣∣∣∣∣ = ln
∣∣∣∣P − M

MP

∣∣∣∣ = −rt + C

Exponentiating, ∣∣∣∣P (t) − M

MP (t)

∣∣∣∣ = e−rt+C
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Return to Logistic Growth 4

Solution: Removing the absolute value
P (t) − M

MP (t)
= Ae−rt

Solving for P (t) gives

P (t) =
M

1 − MAe−rt

With the initial condition, P (0) = P0

P0 =
M

1 − MA
or A =

P0 − M

MP0

Inserting this into the solution above gives

P (t) =
P0M

P0 + (M − P0)e−rt
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Return to Logistic Growth 5

Yeast Model: The best fitting yeast model

dP

dt
= 0.259 P

(
1 − p

12.7

)
, with P (0) = 1.23

The general logistic solution is

P (t) =
P0M

P0 + (M − P0)e−rt

It follows that

P (t) =
15.62

1.23 + 11.47 e−0.259 t

This function creates the standard S-shaped curve of
logistic growth and has the carrying capacity of 12.7
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Integration Example 1

Integration Example 1: Consider the integral∫
x2 cos(4 − x3)dx

Skip Example

Solution: A natural substitution is

u = 4 − x3 so du = −3x2dx

The solution of the integral is∫
x2 cos(4 − x3)dx = − 1

3

∫
cos(4 − x3)(−3x2)dx

= − 1
3

∫
cos(u)du

= − 1
3 sin(u) + C

= − 1
3 sin(4 − x3) + C
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Integration Example 2

Integration Example 2: Consider the integral∫
(ln(2x))2

x
dx

Skip Example

Solution: A natural substitution is

u = ln(2x) so du = dx
x

The solution of the integral is∫
(ln(2x))2

x
dx =

∫
u2du

=
u3

3
+ C

= 1
3 (ln(2x))3 + C
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Differential Equation Example 1 1

Differential Equation Example 1: Consider

dy

dt
=

2ty

t2 + 4
, y(0) = 8

Skip Example

Solution: Separate the differential equation into the two
integrals ∫

dy

y
=

∫
2t

t2 + 4
dt

The right integral uses the substitution u = t2 + 4, so du = 2t dt

ln |y(t)| =
∫

du

u
= ln |u| + C = ln(t2 + 4) + C
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Differential Equation Example 1 2

Solution (cont): The integrations give

ln |y(t)| = ln(t2 + 4) + C

Exponentiating

y(t) = eln(t2+4)+C = eC(t2 + 4)

Note that eC could be positive or negative depending on
the initial condition
From the initial condition, y(0) = 8, it follows that

y(t) = 2(t2 + 4)
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Differential Equation Example 2 1

Differential Equation Example 2: Consider

dy

dt
= 2t et2−y, y(0) = 2

Skip Example

Solution: Rewrite the differential equation

dy

dt
= 2t et2e−y

Separate the differential equation into the two integrals∫
eydy =

∫
2t et2dt
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Differential Equation Example 2 2

Solution (cont): The right integral uses the substitution
u = t2, so du = 2t dt∫

eydy = ey =
∫

2t et2dt =
∫

eudu = eu + C

By substitution the implicit solution is

ey = et2 + C

Taking logarithms

y(t) = ln
(
et2 + C

)
From the initial condition, y(0) = 2 = ln(1 + C), it follows
that

y(t) = ln
(
et2 + e2 − 1

)
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Logistic Growth 1

Logistic Growth: Suppose that a population of animals
satisfies the logistic growth equation

dP

dt
= 0.01 P

(
1 − P

2000

)
, P (0) = 50

Find the general solution of this equation
Determine how long it takes for this population to double
Find how long it takes to reach half of the carrying capacity
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Logistic Growth 2

Solution: We separate this logistic growth model∫
dP

P
(

P
2000 − 1

) = −0.01
∫

dt = −0.01 t + C

The Fundamental Theorem Algebra gives

1
P

(
P

2000 − 1
) =

1
2000(

P
2000 − 1

) − 1
P

We use the substitution u = P
2000 − 1, so du = du

2000

1
2000

∫
dP(

P
2000 − 1

) −
∫

dP

P
=

∫
du

u
−

∫
dP

P
= −0.01 t + C
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Logistic Growth 3

Solution (cont): From the substitution u = P
2000∫

du

u
−

∫
dP

P
= −0.01 t + C

Thus,

ln |u| − ln |P | = ln
∣∣∣∣P − 2000

2000

∣∣∣∣ − ln |P | = −0.01 t + C

So,

ln
∣∣∣∣P − 2000

2000 P

∣∣∣∣ = −0.01 t + C
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Logistic Growth 4

Solution (cont): Exponentiating the previous expression

P (t) − 2000
2000 P (t)

= e−0.01 t+C = Ae−0.01 t

Solving for P (t),

P (t) =
2000

1 − 2000A e−0.01 t

With the initial condition, P (0) = 50,

P (t) =
2000

1 + 39 e−0.01 t
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Logistic Growth 5

Solution (cont): The logistic growth model is

P (t) =
2000

1 + 39 e−0.01 t

The population doubles when

P (td) =
2000

1 + 39 e−0.01 td
= 100

Thus,

1 + 39 e−0.01 td = 20 or e0.01 td = 39
19

Solving for doubling time

td = 100 ln
(

39
19

)
= 71.9
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Logistic Growth 6

Solution (cont): The logistic growth model is

P (t) =
2000

1 + 39 e−0.01 t

The population reaches half the carrying capacity when

P (th) =
2000

1 + 39 e−0.01 th
= 1000

Thus,

1 + 39 e−0.01 th = 2 or e0.01 th = 39

Solving for doubling time

th = 100 ln(39) = 366.4
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Escape Velocity 1

Escape Velocity: Find the velocity required to escape Earth’s
gravitation

Consider an object shot away from a planet that is acted
upon by only gravitational forces
Study the velocity of this object as it moves away from the
surface of a planet using Newton’s law of gravitational
attraction, but ignoring any air resistence
Newton’s law of gravitational attraction states that the
force of attraction is inversely proportional to the square of
the distance between the masses
Newton’s law of motion states that the mass of the object
times the acceleration is equal to the sum of all the forces
acting on the object
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Escape Velocity 2

Gravitational Forces: An object of mass m is projected
upward from Earth’s surface with an initial velocity V0

Let x be the distance from the surface of the Earth, radius
R

Ignore air resistence
Account for the variation of the Earth’s gravitional field
g is the acceleration of gravity at the surface of the Earth
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Escape Velocity 3

Newton’s Law of Motion:

ma = − mgR2

(x + R)2

Acceleration is the time derivative of the velocity or a = dv
dt

Need the velocity as a function of the distance rather than
time
Velocity v = dx

dt , where x is the distance from the Earth
From the chain rule of differentiation

a =
dv

dt
=

dv

dx

dx

dt
= v

dv

dx
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Escape Velocity 4

Newton’s Law of Motion: Differential equation for velocity

mv
dv

dx
= − mgR2

(x + R)2

For the escape velocity, we must determine the smallest
velocity required so that an object does not return to Earth
Separation of variables gives∫

v dv = −
∫

gR2

(x + R)2
dx

Left hand side easily integrated, while right hand side
requires a substitution u = x + R, so du = dx
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Escape Velocity 5

Separated Equation with u = x + R∫
v dv = −

∫
gR2

(x + R)2
dx = −gR2

∫
u−2du

Integrating

v2

2
= −gR2 u−1

−1
+ C =

gR2

x + R
+ C

Thus,

v2 =
2gR2

x + R
+ 2C or v =

√
2gR2

x + R
+ 2C
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Escape Velocity 6

Solution: The initial condition gives v(0) = V0, so

V 2
0 =

2gR2

R
+ 2C or 2C = V 2

0 − 2gR

Solution is

v2(x) =
2gR2

x + R
+ V 2

0 − 2gR

or

v(x) = ±
√

2gR2

x + R
+ V 2

0 − 2gR
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Escape Velocity 7

Escape Velocity is the velocity at the surface of the planet,
V0, required for an object to escape the gravitational pull of a
planet and not return

The smallest velocity is limx→∞ v(x) = 0
Thus,

lim
x→∞

√
2gR2

x + R
+ V 2

0 − 2gR =
√

V 2
0 − 2gR = 0

The escape velocity is

V0 =
√

2gR

For Earth, g = 9.8 m/sec2 and R = 6, 378 km, so the
necessary V0 for escape velocity is

V0 =
√

2(0.0098)(6378) = 11.2 km/sec
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Lake Pollution with Seasonal Flow 1

Lake Pollution with Seasonal Flow Often the flow rate into
a lake varies with the season

Suppose that a 200,000 m3 lake maintains a constant
volume and is initially clean
A river flowing into the lake has 6 µg/m3 of a pesticide
Assume that the flow of the river has the sinusoidal form

f(t) = 100(2 − cos(0.0172 t)),

where t is in days
Find and solve the differential equation describing the
concentration of the pesticide in the lake
Graph the solution for 2 years
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Solution: Begin by creating the differential equation
The change in the amount of pesticide, A(t), equals the
amount entering - the amount leaving
dA(t)

dt
= 600(2 − cos(0.0172 t)) − 100(2 − cos(0.0172 t))c(t)

Concentration satisfies c(t) = A(t)
200,000 , so

dc

dt
= −(2 − cos(0.0172 t))

2000
(c − 6)

Separating variables∫
dc

c − 6
= − 1

2000

∫
(2 − cos(0.0172 t))dt
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Solution: By letting u = c − 6 with du = dc, the integrals are∫
du

u
= −0.0005

∫
(2 − cos(0.0172 t))dt

Integrating

ln(u) = ln(c(t) − 6) = −0.0005
(

2t − sin(0.0172 t)
0.0172

)
+ C

By exponentiating this implicit solution, using the initial
condition (c(0) = 0), and letting 1

0.0172 = 58.14, the
solution becomes

c(t) = 6
(
1 − e−0.0005(2t−58.14 sin(0.0172 t))

)
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Graph: Consider solution for 2 yr or 730 days

c(t) = 6
(
1 − e−0.0005(2t−58.14 sin(0.0172 t))

)
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