Calculus for the Life Sciences II

Lecture Notes – More Applications of Nonlinear Dynamical Systems

Joseph M. Mahaffy, \(\text{mahaffy@math.sdsu.edu} \)

Department of Mathematics and Statistics
Dynamical Systems Group
Computational Sciences Research Center
San Diego State University
San Diego, CA 92182-7720

 $http://www-rohan.sdsu.edu/{\sim}jmahaffy$

Fall 2012

SDSU

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

- (1/64)

Introduction
Salmon Populations
Analysis of the Ricker's Model
Beverton-Holt and Hassell's Model

Introduction - Population Models

Introduction - Population Models

- Simplest (linear) model Malthusian or exponential growth model
- Logistic growth model is a quadratic model
 - Malthusian growth term and a term for crowding effects
 - Has a carrying capacity reflecting natural limits to populations
 - Quadratic updating function becomes negative for large populations
- Ecologists have modified the logistic growth model to make the updating function more realistic and better able to handle largely fluctuating populations
 - $\bullet\,$ Ricker's model used in fishery management
 - Hassell's model used for insects
- Differentiation needed to analyze these models

Introduction
Salmon Populations
Analysis of the Ricker's Model
Beverton-Holt and Hassell's Model

Outline

- 1 Introduction
- 2 Salmon Populations
 - Ricker's Model
- 3 Analysis of the Ricker's Model
- Equilibria
 - Stability Analysis
 - Skeena River Salmon Example
 - Examples
- 4 Beverton-Holt and Hassell's Model
 - Study of a Beetle Population
 - Analysis of Hassell's Model
 - Beetle Study Analysis
 - More Examples

SDSC

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

-(2/64)

Introduction
Salmon Populations
Analysis of the Ricker's Model
Beverton-Holt and Hassell's Model

Ricker's Model

Sockeye Salmon Populations

Sockeye Salmon Populations - Life Cycle

- Salmon are unique in that they breed in specific fresh water lakes and die
- Their offspring migrate to the ocean and mature for about 4-5 years
- Mature salmon migrate at the same time to return to the exact same lake or river bed where they hatched
- Adult salmon breed and die
- Their bodies provide many essential nutrients that nourish the stream of their young

SDS

Sockeye Salmon Populations

Sockeye Salmon Populations

${\bf Sockeye} \ {\bf Salmon} \ {\bf Populations-Problems}$

- Salmon populations in the Pacific Northwest are becoming very endangered
- Many salmon spawning runs have become extinct
- Human activity adversely affect this complex life cycle of the salmon
 - Damming rivers interrupts the runs
 - Forestry allows the water to become too warm
 - Agriculture results in runoff pollution

SDSU

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

-(5/64)

Introduction
Salmon Populations
Analysis of the Ricker's Model
Beverton-Holt and Hassell's Model

Ricker's Model

Sockeye Salmon Populations

Sockeye Salmon Populations - Spawning Behavior

- Create table of sockeye salmon (*Oncorhynchus nerka*) in the Skeena river system
- Table lists four year averages from the starting year
- Since 4 and 5 year old salmon spawn, each grouping of 4 years is an approximation of the offspring of the previous 4 year average
- Model is complicated because the salmon have adapted to have either 4 or 5 year old mature adults spawn
- Simplify the model by ignoring this complexity

Sockeye Salmon Populations – Skeena River

- The life cycle of the salmon is an example of a complex discrete dynamical system
- The importance of salmon has produced many studies
- Sockeye salmon (*Oncorhynchus nerka*) in the Skeena river system in British Columbia
 - Largely uneffected by human development
 - Long time series of data 1908 to 1952
 - Provide good system to model

-(6/64)

Introduction
Salmon Populations
Analysis of the Ricker's Model
Beverton-Holt and Hassell's Model

Ricker's Model

Sockeye Salmon Populations

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

Sockeye Salmon Populations – Skeena River Table

Population in thousands

Year	Population	Year	Population
1908	1,098	1932	278
1912	740	1936	448
1916	714	1940	528
1920	615	1944	639
1924	706	1948	523
1928	510		

Four Year Averages of Skeena River Sockeye Salmon

Ricker's Model – Salmon

Problems with Logistic growth model

$$P_{n+1} = P_n + rP_n \left(1 - \frac{P_n}{M} \right)$$

- Logistic growth model predicted certain yeast populations well
- This model does not fit the data for many organisms
- A major problem is that large populations in the model return a negative population in the next generation
- Several alternative models use only a **non-negative** updating function
- Fishery management has often used Ricker's Model

SDSU

3

 $\textbf{Joseph M. Mahaffy}, \ \langle \texttt{mahaffy@math.sdsu.edu} \rangle$

-- (9/64)

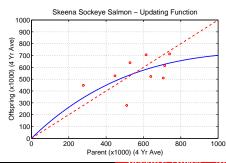
Salmon Populations
Analysis of the Ricker's Model
Beverton-Holt and Hassell's Model

Ricker's Model

Ricker's Model – Salmon

- Successive populations give data for updating functions
 - P_n is parent population, and P_{n+1} is surviving offspring
 - Nonlinear least squares fit of Ricker's function

$$P_{n+1} = 1.535 P_n e^{-0.000783 P_n}$$



SDSU

Ricker's Model – Salmon

Ricker's Model

• Ricker's model was originally formulated using studies of salmon populations

• Ricker's model is given by the equation

$$P_{n+1} = R(Pn) = aP_n e^{-bP_n}$$

- \bullet The positive constants a and b are fit to the data
- Consider the Skeena river salmon data
 - The parent population of 1908-1911 is averaged to 1,098,000 salmon/year returning to the Skeena river watershed
 - It is assumed that the resultant offspring that return to spawn from this group occurs between 1912 and 1915, which averages 740,000 salmon/year

SDSU

 $\mathbf{Joseph~M.~Mahaffy,}~\langle \mathtt{mahaffy@math.sdsu.edu}\rangle$

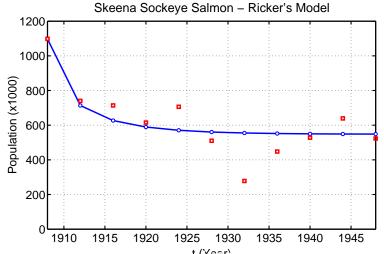
-(10/64)

Introduction
Salmon Populations
Analysis of the Ricker's Model
Beverton-Holt and Hassell's Model

Ricker's Model

Ricker's Model – Salmon

Simulate the Ricker's model using the initial average in 1908 as a starting point



Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

o. ...

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

(11/64)

Ricker's Model – Salmon

Analysis of the Ricker's Model

Summary of Ricker's Model for Skeena river salmon

Analysis of the Ricker's Model: General Ricker's Model

• Ricker's model levels off at a stable equilibrium around 550,000

$$P_{n+1} = R(P_n) = aP_n e^{-bP_n}$$

• Model shows populations monotonically approaching the equilibrium

Equilibrium Analysis

The equilibria are found by setting $P_e = P_{n+1} = P_n$, thus

• There are a few fluctuations from the variations in the environment

$$P_e = aP_e e^{-bP_e}$$
$$0 = P_e (ae^{-bP_e} - 1)$$

• Low point during depression, suggesting bias from economic factors

The equilibria are

$$P_e = 0$$
 and $P_e = \frac{\ln(a)}{b}$

Note that a > 1 required for a positive equilibrium

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

Salmon Populations Analysis of the Ricker's Model

Analysis of the Ricker's Model

Stability Analysis Skeena River Salmon Example

Analysis of the Ricker's Model

Salmon Populations Analysis of the Ricker's Model

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

Stability Analysis of the Ricker's Model: Find the derivative of the updating function

Since the Derivative of the Ricker Updating Function is

$$R'(P) = ae^{-bP}(1 - bP)$$

-(14/64)

Stability Analysis

Skeena River Salmon Example

At the **Equilibrium** $P_e = \frac{\ln(a)}{b}$

provided $1 < a < e \approx 2.7183$

$$R(\ln(a)/b) = ae^{-\ln(a)}(1 - \ln(a)) = 1 - \ln(a)$$

monotonically approaches the equilibrium $P_e = \ln(a)/b$

• The solution of Ricker's model is **stable** and **oscillates** as it approaches the equilibrium $P_e = \ln(a)/b$ provided

• The solution of Ricker's model is **stable** and

Derivative of the Ricker Updating Function

$$R'(P) = a(P(-be^{-bP}) + e^{-bP}) = ae^{-bP}(1 - bP)$$

 $R(P) = aPe^{-bP}$

At the **Equilibrium** $P_e = 0$

$$R(0) = a$$

- If 0 < a < 1, then $P_e = 0$ is stable and the population goes to extinction (also no positive equilibrium)

5

SDSU

• The solution of Ricker's model is **unstable** and **oscillates** as it grows away the equilibrium $P_e = \ln(a)/b$ provided $a > e^2 \approx 7.389$

• If a > 1, then $P_e = 0$ is unstable and the population grows away from the equilibrium

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

 $e < a < e^2 \approx 7.389$

Skeena River Salmon Example

The best Ricker's model for the Skeena sockeye salmon population from 1908-1952 is

$$P_{n+1} = R(P_n) = 1.535 P_n e^{-0.000783 P_n}$$

From the analysis above, the equilibria are

$$P_e = 0$$
 and $P_e = \frac{\ln(1.535)}{0.000783} = 547.3$

The derivative is

$$R'(P) = 1.535e^{-0.000783P}(1 - 0.000783P)$$

- At $P_e = 0$, R'(0) = 1.535 > 1
 - This equilibrium is **unstable** (as expected)
- At $P_e = 547.3$, R'(547.3) = 0.571 < 1
 - This equilibrium is **stable** with solutions monotonically approaching the equilibrium, as observed in the simulation **SDSU**

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

-(17/64)

Introduction Salmon Populations **Analysis of the Ricker's Model** Beverton-Holt and Hassell's Model Equilibria Stability Analysis Skeena River Salmon Example Examples

Example 1 - Ricker's Growth Model

Solution The Ricker's growth function is

$$R(P) = 7 Pe^{-0.02P}$$

- The only intercept is the origin (0,0)
- Since the negative exponential dominates in the function R(P), there is a horizontal asymptote of $P_{n+1} = 0$
- Extrema are found differentiating R(P)

$$R'(P) = 7(P(-0.02P)e^{-0.02P} + e^{-0.02P})$$

= $7e^{-0.02P}(1 - 0.02P)$

• This gives a critical point at $P_c = 50$

SDSU

Example 1 - Ricker's Growth Model

Example 1 - Ricker's Growth Model Let P_n be the population of fish in any year n, and assume the Ricker's growth model

$$P_{n+1} = R(P_n) = 7 P_n e^{-0.02 P_n}$$

Skip Example

- Graph of the updating function R(P) with the identity function, showing the intercepts, all extrema, and any asymptotes
- Find all equilibria of the model and describe the behavior of these equilibria
- Let $P_0 = 100$, and simulate the model for 50 years

SDSU

 $\mathbf{Joseph\ M.\ Mahaffy},\ \langle \mathtt{mahaffy@math.sdsu.edu} \rangle$

-(18/64)

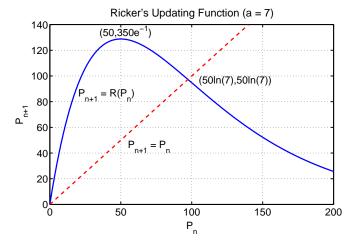
Introduction
Salmon Populations
Analysis of the Ricker's Model
Beverton-Holt and Hassell's Model

Equilibria Stability Analysis Skeena River Salmon Example Examples

Example 1 - Ricker's Growth Model

Solution (cont) The Ricker's function has a maximum at

$$(P_c, R(P_c)) = (50, 350e^{-1}) \approx (50, 128.76)$$



Example 1 - Ricker's Growth Model

Solution (cont) For equilibria, let $P_e = P_{n+1} = P_n$, then

$$P_e = R(P_e) = 7 P_e e^{-0.02 P_e}$$

One equilibrium is $P_e = 0$, so dividing by P_e

$$1 = 7e^{-0.02P_e}$$
 or $e^{0.02P_e} = 7$

This gives the other equilibrium $P_e = 50 \ln(7) \approx 97.3$

• For $P_e = 0$

• The derivative R'(0) = 7 > 1

Solution (cont) Stability Analysis – Recall

• Solutions monotonically grow away from $P_e = 0$

 $R'(P) = 7e^{-0.02P}(1 - 0.02P)$

• For $P_e = 97.3$

• The derivative $R'(97.3) = 1 - \ln(7) \approx -0.95$

• Solutions oscillate, but approach $P_e = 97.3$

• This is a **stable equilibrium**, so populations eventually settle to $P_e = 97.3$

SDSU

6

 ${\bf Joseph~M.~Mahaffy,~\langle mahaffy@math.sdsu.edu\rangle}$

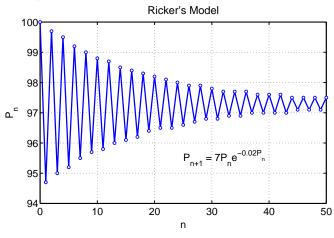
-(21/64)

Introduction
Salmon Populations
Analysis of the Ricker's Model
Beverton-Holt and Hassell's Model

Equilibria Stability Analysis Skeena River Salmon Example Examples

Example 1 - Ricker's Growth Model

Solution (cont) Starting with $P_0 = 100$, the simulation shows the behavior predicted above



(23/64)

SDSU

 ${\bf Joseph~M.~Mahaffy,~\langle mahaffy@math.sdsu.edu\rangle}$

-(22/64)

Introduction Salmon Populations **Analysis of the Ricker's Model** erton-Holt and Hassell's Model Equilibria Stability Analysis Skeena River Salmon Example Examples

Example 2 - Ricker's Growth Model

Example 2 - Ricker's Growth Model Let P_n be the population of fish in any year n, and assume the Ricker's growth model

$$P_{n+1} = R(P_n) = 9 P_n e^{-0.02 P_n}$$

Skip Example

- Graph of the updating function R(P) with the identity function, showing the intercepts, all extrema, and any asymptotes
- Find all equilibria of the model and describe the behavior of these equilibria
- Let $P_0 = 100$, and simulate the model for 50 years

SDSU

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

--(24/64)

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

Equilibria Stability Analysis Skeena River Salmon Example Examples Introduction Salmon Populations **Analysis of the Ricker's Model** Beverton-Holt and Hassell's Model Stability Analysis
Skeena River Salmon Example
Examples

Example 2 - Ricker's Growth Model

Solution The Ricker's growth function is

$$R(P) = 9 Pe^{-0.02P}$$

- The only intercept is the origin (0,0)
- Since the negative exponential dominates in the function R(P), there is a horizontal asymptote of $P_{n+1} = 0$
- Extrema are found differentiating R(P)

$$R'(P) = 9(P(-0.02P)e^{-0.02P} + e^{-0.02P})$$

= $9e^{-0.02P}(1 - 0.02P)$

• This gives a critical point at $P_c = 50$

4

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

-(25/64)

Introduction Salmon Populations **Analysis of the Ricker's Model** Beverton-Holt and Hassell's Model Equilibria Stability Analysis Skeena River Salmon Example **Examples**

Example 2 - Ricker's Growth Model

Solution (cont) For equilibria, let $P_e = P_{n+1} = P_n$, then

$$P_e = R(P_e) = 9 P_e e^{-0.02 P_e}$$

One equilibrium is $P_e = 0$, so dividing by P_e

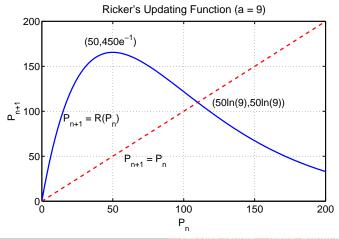
$$1 = 9e^{-0.02P_e}$$
 or $e^{0.02P_e} = 9$

This gives the other equilibrium $P_e = 50 \ln(9) \approx 109.86$

Example 2 - Ricker's Growth Model

Solution (cont) The Ricker's function has a maximum at

$$(P_c, R(P_c)) = (50, 450e^{-1}) \approx (50, 165.5)$$



Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

-(26/64)

Introduction
Salmon Populations
Analysis of the Ricker's Model
Beverton-Holt and Hassell's Model

Equilibria
Stability Analysis
Skeena River Salmon Example

Example 2 - Ricker's Growth Model

Solution (cont) Stability Analysis – Recall

$$R'(P) = 9e^{-0.02P}(1 - 0.02P)$$

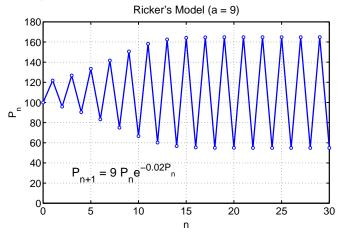
- For $P_e = 0$
 - The derivative R'(0) = 9 > 1
 - Solutions monotonically grow away from $P_e = 0$
- For $P_e = 109.86$
 - The derivative $R'(109.86) = 1 \ln(9) \approx -1.197$
 - Solutions oscillate and grow away from $P_e = 109.86$
 - This is a **unstable equilibrium**, and populations oscillate with **Period 2** between 55 and 165

Equilibria Stability Analysis Skeena River Salmon Example Examples Introduction
Salmon Populations
Analysis of the Ricker's Model
Beverton-Holt and Hassell's Model

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Example 2 - Ricker's Growth Model

Solution (cont) Starting with $P_0 = 100$, the simulation shows the behavior predicted above



SDSU

6

 $\mathbf{Joseph\ M.\ Mahaffy,\ \langle mahaffy@math.sdsu.edu\rangle}$

-- (29/64)

Introduction
Salmon Populations
Analysis of the Ricker's Model
Beverton-Holt and Hassell's Model

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Hassell's Model

Hassell's Model - Alternate Rational form

$$P_{n+1} = H(P_n) = \frac{aP_n}{(1 + bP_n)^c}$$

- Often used in insect populations
- Provides alternative to **logistic** and **Ricker's** growth models, extending the **Beverton-Holt** model
- $H(P_n)$ has **3 parameters**, a, b, and c, while logistic, Ricker's, and Beverton-Holt models have **2 parameters**
- Malthusian growth rate a-1, like Beverton-Holt model

Beverton-Holt Model

Beverton-Holt Model - Rational form

$$P_{n+1} = \frac{aP_n}{1 + bP_n}$$

- Developed in 1957 for fisheries management
- Malthusian growth rate a-1
- Carrying capacity

$$M = \frac{a-1}{b}$$

- Superior to **logistic** model as updating function is non-negative
- Rare amongst nonlinear models Has an explicit solution
- Given an initial population, P_0

$$P_{n+1} = \frac{MP_0}{P_0 + (M - P_0)a^{-n}}$$

505

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

-- (30/64)

Introduction
Salmon Populations
Analysis of the Ricker's Model
Beverton-Holt and Hassell's Model

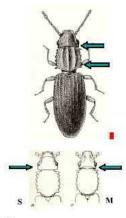
Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Study of a Beetle Population

Study of a Beetle Population

- In 1946, A. C. Crombie studied several beetle populations
- The food was strictly controlled to maintain a constant supply
- 10 grams of cracked wheat were added weekly
- Regular census of the beetle populations recorded
- These are experimental conditions for the **Logistic** growth model

Study of Oryzaephilus surinamensis, the saw-tooth grain beetle



Gorham, 1987

SDSU

4

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

-(33/64)

Introduction Salmon Populations Analysis of the Ricker's Model Beverton-Holt and Hassell's Model Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Study of a Beetle Population

Updating functions - Least squares best fit to data

- Plot the data, P_{n+1} vs. P_n , to fit an updating function
- Logistic growth model fit to data (SSE = 13,273)

$$P_{n+1} = P_n + 0.962 P_n \left(1 - \frac{P_n}{439.2} \right)$$

• Beverton-Holt model fit to data (SSE = 10,028)

$$P_{n+1} = \frac{3.010 \, P_n}{1 + 0.00456 \, P_n}$$

• Hassell's growth model fit to data (SSE = 9.955)

$$P_{n+1} = \frac{3.269 \, P_n}{(1 + 0.00745 \, P_n)^{0.8126}}$$

SDSU

Study of a Beetle Population

Data on Oryzaephilus surinamensis, the saw-tooth grain beetle

Week	Adults	Week	Adults
0	4	16	405
2	4	18	471
4	25	20	420
6	63	22	430
8	147	24	420
10	285	26	475
12	345	28	435
14	361	30	480

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

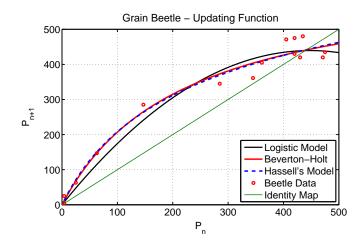
-(34/64)

Salmon Populations
Analysis of the Ricker's Model
Beverton-Holt and Hassell's Model

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Study of a Beetle Population

Graph of Updating functions and Beetle data



Study of a Beetle Population Analysis of Hassell's Model More Examples

Salmon Populations Analysis of the Ricker's Model Beverton-Holt and Hassell's Model

Study of a Beetle Population Analysis of Hassell's Model More Examples

Study of a Beetle Population

Time Series - Least squares best fit to data, P_0

- Use the **updating functions** from fitting data before
- Adjust P_0 by least sum of square errors to time series data on beetles
- Logistic growth model fit to data gives $P_0 = 12.01$ with SSE = 12,027
- Beverton-Holt model fit to data gives $P_0 = 2.63$ with SSE = 8.578
- Hassell's growth model fit to data gives $P_0 = 2.08$ with SSE = 7.948
- Beverton-Holt and Hassell's models are very close with both significantly better than the logistic growth model

6

 ${\bf Joseph\ M.\ Mahaffy},\ \langle {\tt mahaffy@math.sdsu.edu} \rangle$

Salmon Populations Analysis of the Ricker's Model Beverton-Holt and Hassell's Model

Analysis of Hassell's Model

Analysis of Hassell's Model

Analysis of Hassell's Model – Equilibria

• Let $P_e = P_{n+1} = P_n$, so

$$P_e = \frac{aP_e}{(1+bP_e)^c}$$

• Thus,

$$P_e(1+bP_e)^c = aP_e$$

- One equilibrium is $P_e = 0$ (as expected the extinction equilibrium)
- The other satisfies

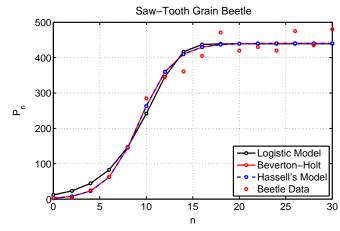
$$(1+bP_e)^c = a$$

$$1+bP_e = a^{1/c}$$

$$P_e = \frac{a^{1/c}-1}{b}$$

Study of a Beetle Population

Time Series graph of Models with Beetle Data



SDSU

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

Salmon Populations Beverton-Holt and Hassell's Model

Study of a Beetle Population Analysis of Hassell's Model

-(38/64)

Analysis of Hassell's Model

Analysis of Hassell's Model – Stability Analysis

• Hassell's updating function is

$$H(P) = \frac{aP}{(1+bP)^c}$$

- Differentiate using the quotient rule and chain rule
- The derivative of the denominator (chain rule) is

$$\frac{d}{dP}(1+bP)^c = c(1+bP)^{c-1}b = bc(1+bP)^{c-1}$$

• By the quotient rule

$$H'(P) = \frac{a(1+bP)^c - abcP(1+bP)^{c-1}}{(1+bP)^{2c}}$$
$$= a\frac{1+b(1-c)P}{(1+bP)^{c+1}}$$

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Introduction
Salmon Populations
Analysis of the Ricker's Model
Beverton-Holt and Hassell's Model
More Examples

Analysis of Hassell's Model

Analysis of Hassell's Model - Stability Analysis

• The derivative is

$$H'(P) = a \frac{1 + b(1 - c)P}{(1 + bP)^{c+1}}$$

- At $P_e = 0$, H'(0) = a
 - Since a > 1, the zero equilibrium is **unstable**
 - Solutions monotonically growing away from the extinction equilibrium

3

 $\mathbf{Joseph\ M.\ Mahaffy},\ \langle \mathtt{mahaffy@math.sdsu.edu} \rangle$

-(41/64)

Introduction
Salmon Populations
Analysis of the Ricker's Model
Beverton-Holt and Hassell's Model

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Beetle Study Analysis

Beetle Study Analysis - Logistic Growth Model

$$P_{n+1} = F(P_n) = P_n + 0.962 P_n \left(1 - \frac{P_n}{439.2}\right)$$

- The equilibria are $P_e = 0$ and 439.2
- The derivative of the updating function is

$$F'(P) = 1.962 - 0.00438 P$$

- At $P_e = 0$, F'(0) = 1.962, so this equilibrium is monotonically unstable
- At $P_e = 439.2$, F'(439.2) = 0.038, so this equilibrium is **monotonically stable**

SDSU

Analysis of Hassell's Model

Analysis of Hassell's Model – Stability Analysis

• The derivative is

$$H'(P) = a \frac{1 + b(1 - c)P}{(1 + bP)^{c+1}}$$

• At $P_e = (a^{1/c} - 1)/b$, we find

$$H'(P_e) = a \frac{1 + (1 - c)(a^{1/c} - 1)}{(1 + (a^{1/c} - 1))^{c+1}}$$
$$= \frac{c}{a^{1/c}} + 1 - c$$

- The stability of the carrying capacity equilibrium depends on both a and c, but not b
- When c = 1 (Beverton-Holt model) $H'(P_e) = \frac{1}{a}$, so this equilibrium is monotonically stable

SDST

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

-(42/64)

Introduction
Salmon Populations
Analysis of the Ricker's Model
Beverton-Holt and Hassell's Model

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Beetle Study Analysis

Beetle Study Analysis - Beverton-Holt Growth Model

$$P_{n+1} = B(P_n) = \frac{3.010 \, P_n}{1 + 0.00456 \, P_n}$$

- The equilibria are $P_e = 0$ and 440.8
- The derivative of the updating function is

$$B'(P) = \frac{3.010}{(1 + 0.00456 \, P)^2}$$

- At $P_e = 0$, B'(0) = 3.010, so this equilibrium is monotonically unstable
- At $P_e = 440.8$, B'(440.8) = 0.332, so this equilibrium is monotonically stable

SDSC

Beetle Study Analysis

Beetle Study Analysis - Hassell's Growth Model

$$P_{n+1} = H(P_n) = \frac{3.269 \, P_n}{(1 + 0.00745 \, P_n)^{0.8126}}$$

- The equilibria are $P_e = 0$ and 442.4
- The derivative of the updating function is

$$H'(P) = 3.269 \frac{1 + 0.001396 P}{(1 + 0.00745 P)^{1.8126}}$$

- At $P_e = 0$, H'(0) = 3.269, so this equilibrium is monotonically unstable
- At $P_e = 442.4$, H'(442.4) = 0.3766, so this equilibrium is monotonically stable

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

-(45/64)

Introduction
Salmon Populations
Analysis of the Ricker's Model
Beverton-Holt and Hassell's Model

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Example 1 - Beverton-Holt Model

Solution - Beverton-Holt Model: Iterate the model with $p_0 = 200$

$$p_1 = \frac{20(200)}{(1+0.02(200))} = 800$$

$$p_2 = \frac{20(800)}{(1+0.02(800))} = 941$$

$$p_3 = \frac{20(941)}{(1+0.02(941))} = 949.6$$

From before, the **carrying capacity** for the Beverton-Holt model is

$$M = \frac{a-1}{b} = \frac{19}{0.02} = 950$$

SDSU

Example 1 - Beverton-Holt Model

Example 1 - Beverton-Holt Model: Suppose that a population of insects (measured in weeks) grows according to the discrete dynamical model

$$p_{n+1} = B(p_n) = \frac{20 \, p_n}{1 + 0.02 \, p_n}$$

Skip Example

- Assume that $p_0 = 200$ and find the population for the next 3 weeks
- Simulate the model for 10 weeks
- Graph the updating function with the identity map
- Determine the equilibria and analyze their stability

SDSU

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

-(46/64)

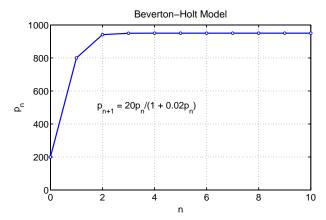
Salmon Populations
Analysis of the Ricker's Model
Beverton-Holt and Hassell's Model

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Example 1 - Beverton-Holt Model

Solution (cont): The explicit solution for this model is

$$p_n = \frac{950 \, p_0}{p_0 + (950 - p_0)20^{-n}} = \frac{950}{1 + 3.75(20)^{-n}}$$



Example 1 - Beverton-Holt Model

Example 1 - Beverton-Holt Model

Analysis of the Ricker's Model Beverton-Holt and Hassell's Model

Solution (cont): Graphing the Updating function

$$B(p) = \frac{20 \, p}{1 + 0.02 \, p}$$

- The only intercept is the origin
- There is a horizontal asymptote satisfying

$$\lim_{p \to \infty} B(p) = \frac{20}{0.02} = 1000$$

• Biologically, this asymptote means that there is a maximum number in the next generation no matter how large the population starts

SDSU

6

 ${\bf Joseph~M.~Mahaffy,~\langle mahaffy@math.sdsu.edu\rangle}$

Salmon Populations Analysis of the Ricker's Model Beverton-Holt and Hassell's Model

Study of a Beetle Population Analysis of Hassell's Model

Example 1 - Beverton-Holt Model

Solution (cont): Analysis of Beverton-Holt model

• Equilibria satisfy

$$p_e = B(p_e) = \frac{20 \, p_e}{1 + 0.02 \, p_e}$$

- One equilibrium is $p_e = 0$
- The other satisfies

$$1 + 0.02 p_e = 20$$
 or $p_e = 950$

• The derivative of the updating function is

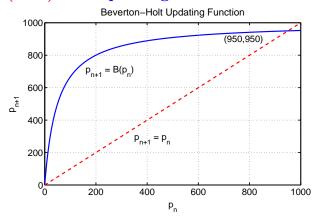
$$B'(p) = \frac{20}{(1+0.02\,p)^2}$$

5050

Salmon Populations

Solution (cont): The updating function and identity map

More Examples



SDSU

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

Salmon Populations Analysis of the Ricker's Model Beverton-Holt and Hassell's Model

Study of a Beetle Population Analysis of Hassell's Model

-(50/64)

Example 1 - Beverton-Holt Model

Solution (cont): Analysis of Beverton-Holt model – Since the derivative of the updating function is

$$B'(p) = \frac{20}{(1+0.02\,p)^2}$$

- Equilibrium $p_e = 0$ has B'(0) = 20
- The extinction equilibrium is unstable with solutions monotonically growing away
- The equilibrium $p_e = 950$ has $B'(950) = \frac{1}{20}$
- The carrying capacity equilibrium is stable with solutions monotonically approaching

Example 2 - Hassell's Model

Example 2 - Hassell's Model: Suppose that a population of butterflies (measured in weeks) grows according to the discrete dynamical model

$$p_{n+1} = H(p_n) = \frac{81 p_n}{(1 + 0.002 p_n)^4}$$

- Assume that $p_0 = 200$ and find the population for the next 2 weeks
- Simulate the model for 20 weeks
- Graph the updating function with the identity map
- Determine the equilibria and analyze their stability

SDSU

3

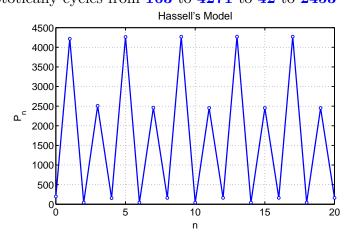
Joseph M. Mahaffy, \(\text{mahaffy@math.sdsu.edu} \)

Salmon Populations Analysis of the Ricker's Model Beverton-Holt and Hassell's Model

Study of a Beetle Population Analysis of Hassell's Model More Examples

Example 2 - Hassell's Model

Solution (cont): This model is iterated 20 times, and the observed behavior is a **Period 4** solution Asymptotically cycles from 163 to 4271 to 42 to 2453



ട്ടാടാ

Example 2 - Hassell's Model

Solution - Hassell's Model: Iterate the model with $p_0 = 200$

$$p_1 = \frac{81(200)}{(1+0.002(200))^4} = 4217$$

$$p_2 = \frac{81(4217)}{(1+0.002(4217))^4} = 43$$

These iterations show dramatic population swings, suggesting instability in the model

SDSU

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

-- (54/64)

Salmon Populations Analysis of the Ricker's Model Beverton-Holt and Hassell's Model

Study of a Beetle Population Analysis of Hassell's Model More Examples

Example 2 - Hassell's Model

Solution (cont): Graphing the Updating function

$$H(p) = \frac{81 p}{(1 + 0.002 p)^4}$$

- The only intercept is the origin
- Since the power of p in the denominator exceeds the power of pin the numerator, there is a horizontal asymptote H=0
- The derivative is

$$H'(p) = 81 \frac{(1+0.002 p)^4 - p \cdot 4(1+0.002 p)^3 0.002}{(1+0.002 p)^8}$$
$$= 81 \frac{(1-0.006 p)}{(1+0.002 p)^5}$$

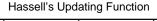
- H'(p) = 0 when 1 0.006 p = 0 or $p_{max} = \frac{500}{2}$
- There is a **maximum** at (166.7, 4271.5)

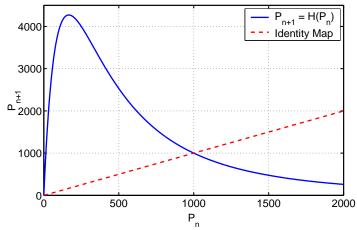
Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu) — (56/64)

Example 2 - Hassell's Model

Solution (cont): The ${\bf updating}$ function and ${\bf identity}$ ${\bf map}$





SDSU

SDSU

5

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

-(57/64)

Introduction
Salmon Populations
Analysis of the Ricker's Model
Beverton-Holt and Hassell's Model

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Example 2 - Hassell's Model

Solution (cont): Analysis of Hassell's model – Since the derivative of the updating function is

$$H'(p) = 81 \frac{(1 - 0.006 p)}{(1 + 0.002 p)^5}$$

- Equilibrium $p_e = 0$ has H'(0) = 81
- The extinction equilibrium is unstable with solutions monotonically growing away
- The equilibrium $p_e = 1000$ has $H'(1000) = -\frac{5}{3}$
- The $p_e = 1000$ equilibrium is unstable with solutions oscillating and moving away from p_e

Example 2 - Hassell's Model

Solution (cont): Analysis of Hassell's model

• Equilibria satisfy

$$p_e = H(p_e) = \frac{81 \, p_e}{(1 + 0.002 \, p_e)^4}$$

- One equilibrium is $p_e = 0$
- The other satisfies

$$(1 + 0.002 \, p_e)^4 = 81$$

• Thus,

$$1 + 0.002 p_e = 3$$
 or $p_e = 1000$

SDSU

 ${\bf Joseph~M.~Mahaffy},~\langle {\tt mahaffy@math.sdsu.edu}\rangle$

--(58/64)

Introduction
Salmon Populations
Analysis of the Ricker's Model
Beverton-Holt and Hassell's Model

Study of a Beetle Population Analysis of Hassell's Model Beetle Study Analysis More Examples

Example 3 - Chalone Model

Example 3 - Chalone Model or Model for Cellular Division with Inhibition: A biochemical agent, chalone, is released by a cell to inhibit mitosis of nearby cells, preventing the over crowding of cells.

This was an early model for **cancer**, speculating that this control breaks down

$$p_{n+1} = f(p_n) = \frac{2 p_n}{1 + 10^{-8} p_n^4}$$

Skip Example

- Let $p_0 = 10$ and find the population for the next 2 generations
- Simulate the model for 20 weeks
- Determine the equilibria and analyze their stability

505

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

(59/64)

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

-(60/64)

Analysis of Hassell's Model More Examples

Example 3 - Chalone Model

Example 3 - Chalone Model

Analysis of the Ricker's Model Beverton-Holt and Hassell's Model

Salmon Populations

Analysis of Hassell's Model More Examples

Solution - Chalone Model: Iterate the model with $p_0 = 10$

$$p_1 = \frac{2(10)}{1 + 10^{-8}(10)^4} = 20.0$$

$$p_2 = \frac{2(20)}{1 + 10^{-8}(20)^4} = 39.94$$

$$p_3 = \frac{2(39.94)}{1 + 10^{-8}(39.94)^4} = 77.90$$

SDSU

4

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

Salmon Populations Analysis of the Ricker's Model Beverton-Holt and Hassell's Model

Study of a Beetle Population Analysis of Hassell's Model More Examples

Example 3 - Chalone Model

Solution (cont): Analysis of Chalone model

• Equilibria satisfy

$$p_e = f(p_e) = \frac{2 p_e}{1 + 10^{-8} p_e^4}$$

- One equilibrium is $p_e = 0$
- The other satisfies

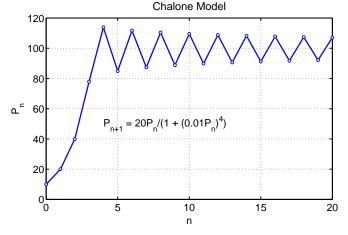
$$1 + 10^{-8} p_e^4 = 2$$

• Thus,

$$p_e^4 = 10^8$$
 or $p_e = 100$

SDSU

Solution (cont): This model is iterated 20 times, and the model shows oscillations



-(62/64)

Salmon Populations Analysis of the Ricker's Model Beverton-Holt and Hassell's Model

Study of a Beetle Population Analysis of Hassell's Model More Examples

Example 3 - Chalone Model

Joseph M. Mahaffy, (mahaffy@math.sdsu.edu)

Solution (cont): Analysis of Chalone model – The derivative of the updating function is

$$f'(p) = 2\frac{(1+10^{-8}p^4) - p(4 \times 10^{-8}p^3)}{(1+10^{-8}p^4)^2}$$
$$= \frac{2-6 \times 10^{-8}p^4}{(1+10^{-8}p^4)^2}$$

- Equilibrium $p_e = 0$ has f'(0) = 2
- The extinction equilibrium is unstable with solutions monotonically growing away
- The equilibrium $p_e = 100$ has f'(100) = -1
- The $p_e = 100$ equilibrium is on the border of stability with solutions oscillating and slowly approaching p_e