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Trigonometric functions are used to approximate more
complicated behavior

Joseph Fourier (1768-1830) used series of trigonometric
functions to approximate other phenomena, such as
harmonic motion of vibrating strings

Tidal flow results from the interaction of differing
gravitational fields

The complex dynamics are approximated by a short series
of trigonometric functions with periods related to the
astronomical bodies causing the tidal flow
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Tidal flow affects the daily dynamics of coastal zones

The Bay of Fundy in Newfoundland has tides rising over 16
meters in a 6.25 hour time period
In San Diego, the tidal flow is not so dramatic

The tides do affect a variety of marine behaviors

Most days there are two high tides (high-high and
low-high) and two low tides (low-low and high-low)
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Diurnal components about 24 hours (once per day)

K1, the lunisolar force
O1, the main lunar force

Semidiurnal components about 12 hours (twice per day)

M2, the main lunar force
S2, the main solar force

Periodic motion of the moon about the Earth (about 25
hours) cause variations
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When the moon, Earth, and sun align at either a full moon
or a new moon, then the tides are at their highest and
lowest as the forces of gravity enhance tidal flow

The tides show the least variation when the moon is in its
first or last quarter

Other complications include

The elliptical orbit of the moon around the Earth
The elliptical orbit of the Earth around the sun
The influences of other planets
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Mathematical Model for Tides

What mathematical tools can help predict the
tides?

Use a series of trigonometric functions to approximate the
behavior of the tides

Standard programs use 12-14 trigonometric functions

Next Slide are graphs of the high and low tides for San
Diego for September 2002

The model is generated using only four trigonometric
functions from the four forces described above
The data points indicate the actual values of the high and
low tides from standard tide tables
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Model for Height of Tides, h(t) in feet with t hours from
midnight 1st day of the month

The function h(t) is formed by the sum of four cosine
functions and a constant

The periods of the cosine functions reflect the periodic
nature of the forces

K1, lunisolar diurnal force with period p1 = 23.934
O1, main lunar diurnal force with period p2 = 25.819
M2, main lunar semidiurnal force with period p3 = 12.421
S2, main solar semidiurnal force with period p4 = 12.00

Periods are fixed based on the rotations of the moon and
Earth
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Model for Height of Tides

The amplitudes associated with each force are ai, i = 1, .., 4

The phase shifts associated with each force are φi, i = 1, .., 4

A vertical shift satisfies a0

The parameters, ai and φi, are fit using a least squares best
fit to the high and low tides for the month of September
2002
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h(t) = a0 +

4
∑
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ai cos

(

2π

pi

(t − φi)

)
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Mathematical Model for Tides 6

h(t) = a0 +

4
∑

i=1

ai cos

(

2π

pi

(t − φi)

)

Best Fitting Parameters

Vertical Shift a0 = 2.937 ft

Force Amplitude Phase Shift

K1 a1 = 0.878 φ1 = 16.246

O1 a2 = 0.762 φ2 = 14.311

M2 a3 = 1.993 φ3 = 6.164

S2 a4 = 0.899 φ4 = 10.857
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Model and Forces

New Moon First Quarter Full Moon Last Quarter

September 6 September 13 September 21 September 29
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Mathematical Model for Tides 7

Model and Forces

The strongest force affecting the tides is the semidiurnal
main lunar force

The highest and lowest tides of the month coincide with
the new moon and full moon

New Moon First Quarter Full Moon Last Quarter

September 6 September 13 September 21 September 29
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Modelling Low and High Tides

When do the highest and lowest tides occur based
on the mathematical model?
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Modelling Low and High Tides

When do the highest and lowest tides occur based
on the mathematical model?

The high and low points of a function are the maxima and
minima
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Modelling Low and High Tides

When do the highest and lowest tides occur based
on the mathematical model?

The high and low points of a function are the maxima and
minima

This uses differentiation of our model, h(t)
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Mathematical Model for Tides 8

Modelling Low and High Tides

When do the highest and lowest tides occur based
on the mathematical model?

The high and low points of a function are the maxima and
minima

This uses differentiation of our model, h(t)

The high and low tides should occur when h′(t) = 0
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Differentiation of Sine and Cosine

The derivative of these functions is found using the
definition of the derivative and some trigonometric
identities
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Differentiation of Sine and Cosine

The derivative of these functions is found using the
definition of the derivative and some trigonometric
identities

Derivative of Sine

d

dx
sin(x) = cos(x)

Joseph M. Mahaffy, 〈mahaffy@math.sdsu.edu〉
Lecture Notes – Differentiation of Trigonometric
— (17/44)



Introduction
Differentiation of Sine and Cosine

Basic Differentiation
General Rule of Differentiation
Examples
Damped Oscillator
High and Low Tides
Change in Temperature

Differentiation of Sine and Cosine 1

Differentiation of Sine and Cosine

The derivative of these functions is found using the
definition of the derivative and some trigonometric
identities

Derivative of Sine

d

dx
sin(x) = cos(x)

Derivative of Cosine

d

dx
cos(x) = − sin(x)
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Differentiation of Sine Below is the graph of sine and its
derivative

d

dx
sin(x) = cos(x)

−2π −π 0 π 2π

−0.5

0

0.5

t

f(
t)
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nd

 f 
’(t

)

Sine and Its Derivative

f(t) = sin(t)
f ’(t) = cos(t)
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Differentiation of Sine and Cosine 3

Differentiation of Cosine Below is the graph of cosine and
its derivative

d

dx
cos(x) = − sin(x)

−2π −π 0 π 2π

−0.5

0

0.5
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f(
t)
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 f 
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Cosine and Its Derivative

f(t) = cos(t)
f ’(t) = −sin(t)
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General Rule of Differentiation of Sine and Cosine
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General Rule of Differentiation of Sine and Cosine

The chain rule can be applied to give a more general rule
of differentiation
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General Rule of Differentiation of Sine and Cosine

The chain rule can be applied to give a more general rule
of differentiation

General Derivative of Sine

d

dx
sin(f(x)) = f ′(x) cos(f(x))
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Differentiation of Sine and Cosine 4

General Rule of Differentiation of Sine and Cosine

The chain rule can be applied to give a more general rule
of differentiation

General Derivative of Sine

d

dx
sin(f(x)) = f ′(x) cos(f(x))

General Derivative of Cosine

d

dx
cos(f(x)) = −f ′(x) sin(f(x))
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Example 1: Derivative of Sine Function

Example 1: Consider the function

f(x) = sin(x2 + 1)
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Example 1: Derivative of Sine Function

Example 1: Consider the function

f(x) = sin(x2 + 1)

Find the derivative of f(x)
Skip Example
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Example 1: Derivative of Sine Function

Example 1: Consider the function

f(x) = sin(x2 + 1)

Find the derivative of f(x)
Skip Example

Solution: Since the derivative of x2 + 1 is 2x, the derivative of
f(x) is
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Example 1: Derivative of Sine Function

Example 1: Consider the function

f(x) = sin(x2 + 1)

Find the derivative of f(x)
Skip Example

Solution: Since the derivative of x2 + 1 is 2x, the derivative of
f(x) is

f ′(x) = 2x cos(x2 + 1)
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Example 2: Derivative of Cosine Function

Example 2: Consider the function

f(x) = e−3x cos(x2 + 4)
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Example 2: Derivative of Cosine Function

Example 2: Consider the function

f(x) = e−3x cos(x2 + 4)

Find the derivative of f(x)
Skip Example

Solution:This derivative uses the product and chain rule
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Example 2: Derivative of Cosine Function

Example 2: Consider the function

f(x) = e−3x cos(x2 + 4)

Find the derivative of f(x)
Skip Example

Solution:This derivative uses the product and chain rule

f ′(x) = e−3x(−2x sin(x2 + 4)) + cos(x2 + 4)(e−3x(−3))
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Example 2: Derivative of Cosine Function

Example 2: Consider the function

f(x) = e−3x cos(x2 + 4)

Find the derivative of f(x)
Skip Example

Solution:This derivative uses the product and chain rule

f ′(x) = e−3x(−2x sin(x2 + 4)) + cos(x2 + 4)(e−3x(−3))

f ′(x) = −e−3x(2x sin(x2 + 4) + 3 cos(x2 + 4))
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Example 3: More Examples of Differentiation

Example 3: Consider the function

f(x) = 3x2 sin(ln(x + 2))
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Example 3: Consider the function

f(x) = 3x2 sin(ln(x + 2))

Find the derivative of f(x)
Skip Example
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Example 3: More Examples of Differentiation

Example 3: Consider the function

f(x) = 3x2 sin(ln(x + 2))

Find the derivative of f(x)
Skip Example

Solution:This derivative uses the product and chain rule

f ′(x) =
(

3x2
)

(

d

dx
sin(ln(x + 2))

)

+ 6x sin(ln(x + 2))
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Example 3: More Examples of Differentiation

Example 3: Consider the function

f(x) = 3x2 sin(ln(x + 2))

Find the derivative of f(x)
Skip Example

Solution:This derivative uses the product and chain rule

f ′(x) =
(

3x2
)

(

d

dx
sin(ln(x + 2))

)

+ 6x sin(ln(x + 2))

f ′(x) =
3x2 cos(ln(x + 2))

x + 2
+ 6x sin(ln(x + 2))
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Example 4: More Examples of Differentiation

Example 4: Consider the function

f(x) = 4e− cos(2x+1)
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Example 4: More Examples of Differentiation

Example 4: Consider the function

f(x) = 4e− cos(2x+1)

Find the derivative of f(x)
Skip Example
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Example 4: More Examples of Differentiation

Example 4: Consider the function

f(x) = 4e− cos(2x+1)

Find the derivative of f(x)
Skip Example

Solution:This derivative uses the chain rule
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Example 4: More Examples of Differentiation

Example 4: Consider the function

f(x) = 4e− cos(2x+1)

Find the derivative of f(x)
Skip Example

Solution:This derivative uses the chain rule

g ′(x) = 4e− cos(2x+1)(2 sin(2x + 1))
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Example: Damped Oscillator 1

Example: Damped Oscillator
Consider the function

y(t) = 2 e−t sin(t)

Skip Example
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Example: Damped Oscillator 1

Example: Damped Oscillator
Consider the function

y(t) = 2 e−t sin(t)

Skip Example

Function describes the motion of a damped oscillator, like
shock absorbers on a car
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Example: Damped Oscillator 1

Example: Damped Oscillator
Consider the function

y(t) = 2 e−t sin(t)

Skip Example

Function describes the motion of a damped oscillator, like
shock absorbers on a car

Find the absolute maximum and minimum for this function
for t ≥ 0
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Example: Damped Oscillator 1

Example: Damped Oscillator
Consider the function

y(t) = 2 e−t sin(t)

Skip Example

Function describes the motion of a damped oscillator, like
shock absorbers on a car

Find the absolute maximum and minimum for this function
for t ≥ 0

Graph of this function
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Example: Damped Oscillator 2

Solution: Damped Oscillator is given by

y(t) = 2 e−t sin(t)
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Example: Damped Oscillator 2

Solution: Damped Oscillator is given by

y(t) = 2 e−t sin(t)

Derivative found with the product rule

y ′(t) = 2(e−t cos(t) + e−t(−1) sin(t))

= 2e−t(cos(t) − sin(t))
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Example: Damped Oscillator 2

Solution: Damped Oscillator is given by

y(t) = 2 e−t sin(t)

Derivative found with the product rule

y ′(t) = 2(e−t cos(t) + e−t(−1) sin(t))

= 2e−t(cos(t) − sin(t))

The extrema occur when f ′(t) = 0, which happens
whenever

cos(t) = sin(t)
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Example: Damped Oscillator 2

Solution: Damped Oscillator is given by

y(t) = 2 e−t sin(t)

Derivative found with the product rule

y ′(t) = 2(e−t cos(t) + e−t(−1) sin(t))

= 2e−t(cos(t) − sin(t))

The extrema occur when f ′(t) = 0, which happens
whenever

cos(t) = sin(t)

Sine and cosine are equal when

t =
π

4
+ nπ
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Example: Damped Oscillator 3

Solution (cont): Damped Oscillator satisfies

y(t) = 2 e−t sin(t)

y ′(t) = 2e−t(cos(t) − sin(t))
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Example: Damped Oscillator 3

Solution (cont): Damped Oscillator satisfies

y(t) = 2 e−t sin(t)

y ′(t) = 2e−t(cos(t) − sin(t))

The exponential function damps this solution to zero
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Example: Damped Oscillator 3

Solution (cont): Damped Oscillator satisfies

y(t) = 2 e−t sin(t)

y ′(t) = 2e−t(cos(t) − sin(t))

The exponential function damps this solution to zero
Horizontal asymptote of y = 0
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Example: Damped Oscillator 3

Solution (cont): Damped Oscillator satisfies

y(t) = 2 e−t sin(t)

y ′(t) = 2e−t(cos(t) − sin(t))

The exponential function damps this solution to zero
Horizontal asymptote of y = 0

The function is zero whenever t = nπ for n an integer
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Basic Differentiation
General Rule of Differentiation
Examples
Damped Oscillator
High and Low Tides
Change in Temperature

Example: Damped Oscillator 3

Solution (cont): Damped Oscillator satisfies

y(t) = 2 e−t sin(t)

y ′(t) = 2e−t(cos(t) − sin(t))

The exponential function damps this solution to zero
Horizontal asymptote of y = 0

The function is zero whenever t = nπ for n an integer
The absolute maximum and minimum occur at the first
relative maximum and minimum
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Differentiation of Sine and Cosine

Basic Differentiation
General Rule of Differentiation
Examples
Damped Oscillator
High and Low Tides
Change in Temperature

Example: Damped Oscillator 3

Solution (cont): Damped Oscillator satisfies

y(t) = 2 e−t sin(t)

y ′(t) = 2e−t(cos(t) − sin(t))

The exponential function damps this solution to zero
Horizontal asymptote of y = 0

The function is zero whenever t = nπ for n an integer
The absolute maximum and minimum occur at the first
relative maximum and minimum

The maximum occurs when t = π

4
with

y
(

π

4

)

= 2e−
π

4 sin
(

π

4

)

≈ 0.6448
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Introduction
Differentiation of Sine and Cosine

Basic Differentiation
General Rule of Differentiation
Examples
Damped Oscillator
High and Low Tides
Change in Temperature

Example: Damped Oscillator 3

Solution (cont): Damped Oscillator satisfies

y(t) = 2 e−t sin(t)

y ′(t) = 2e−t(cos(t) − sin(t))

The exponential function damps this solution to zero
Horizontal asymptote of y = 0

The function is zero whenever t = nπ for n an integer
The absolute maximum and minimum occur at the first
relative maximum and minimum

The maximum occurs when t = π

4
with

y
(

π

4

)

= 2e−
π

4 sin
(

π

4

)

≈ 0.6448

The minimum happens when t = 5π

4
with

y
(

5π

4

)

= 2e−
5π

4 sin
(

5π

4

)

≈ −0.02786
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Example: Damped Oscillator 4

Solution (cont): Damped Oscillator

y(t) = 2 e−t sin(t)

0 1 2 3 4 5 6 7

0

0.1

0.2

0.3

0.4

0.5

0.6

t

y(
t)
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Change in Temperature

High and Low Tides 1

High and Low Tides

The highest and lowest tides of the month occur near the
Full or New moon phases
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Change in Temperature

High and Low Tides 1

High and Low Tides

The highest and lowest tides of the month occur near the
Full or New moon phases

The gravity of the moon assists the gravity of the sun to
enlarge the tides
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High and Low Tides
Change in Temperature

High and Low Tides 1

High and Low Tides

The highest and lowest tides of the month occur near the
Full or New moon phases

The gravity of the moon assists the gravity of the sun to
enlarge the tides

Use the model to predict the highest high-high tide and
lowest low-low tide for the first week
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High and Low Tides 1

High and Low Tides

The highest and lowest tides of the month occur near the
Full or New moon phases

The gravity of the moon assists the gravity of the sun to
enlarge the tides

Use the model to predict the highest high-high tide and
lowest low-low tide for the first week

Determine the error between the model and the actual
values for these tides
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Basic Differentiation
General Rule of Differentiation
Examples
Damped Oscillator
High and Low Tides
Change in Temperature

High and Low Tides 1

High and Low Tides

The highest and lowest tides of the month occur near the
Full or New moon phases

The gravity of the moon assists the gravity of the sun to
enlarge the tides

Use the model to predict the highest high-high tide and
lowest low-low tide for the first week

Determine the error between the model and the actual
values for these tides

The times and heights of the high and low tides use the
local extrema
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High and Low Tides
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High and Low Tides 2

Model for Tides

h(t) = a0 +
4

∑

i=1

ai cos
(

2π
pi

(t − φi)
)
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Basic Differentiation
General Rule of Differentiation
Examples
Damped Oscillator
High and Low Tides
Change in Temperature

High and Low Tides 2

Model for Tides

h(t) = a0 +
4

∑

i=1

ai cos
(

2π
pi

(t − φi)
)

The derivative satisfies:

h ′(t) = −
4

∑

i=1

(

2πai

pi

)

sin
(

2π
pi

(t − φi)
)
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Introduction
Differentiation of Sine and Cosine

Basic Differentiation
General Rule of Differentiation
Examples
Damped Oscillator
High and Low Tides
Change in Temperature

High and Low Tides 2

Model for Tides

h(t) = a0 +
4

∑

i=1

ai cos
(

2π
pi

(t − φi)
)

The derivative satisfies:

h ′(t) = −
4

∑

i=1

(

2πai

pi

)

sin
(

2π
pi

(t − φi)
)

Clearly, this equation is too complicated to find the
extrema by hand
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Differentiation of Sine and Cosine

Basic Differentiation
General Rule of Differentiation
Examples
Damped Oscillator
High and Low Tides
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High and Low Tides 2

Model for Tides

h(t) = a0 +
4

∑

i=1

ai cos
(

2π
pi

(t − φi)
)

The derivative satisfies:

h ′(t) = −
4

∑

i=1

(

2πai

pi

)

sin
(

2π
pi

(t − φi)
)

Clearly, this equation is too complicated to find the
extrema by hand
The Computer labs have shown that finding zeroes of this
function are readily done using either Excel’s Solver or
Maple’s fsolve command
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Examples
Damped Oscillator
High and Low Tides
Change in Temperature

High and Low Tides 3

New Moon There was a New moon on September 6, 2002
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High and Low Tides 3

New Moon There was a New moon on September 6, 2002

The graphs show many local extrema for the month of
September
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High and Low Tides 3

New Moon There was a New moon on September 6, 2002

The graphs show many local extrema for the month of
September

Usually four of them each day
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High and Low Tides 3

New Moon There was a New moon on September 6, 2002

The graphs show many local extrema for the month of
September

Usually four of them each day

Localize the search for the extrema using the visual
information from the graph
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Basic Differentiation
General Rule of Differentiation
Examples
Damped Oscillator
High and Low Tides
Change in Temperature

High and Low Tides 3

New Moon There was a New moon on September 6, 2002

The graphs show many local extrema for the month of
September

Usually four of them each day

Localize the search for the extrema using the visual
information from the graph

In the first week, the data show that the highest tide is 6.7
ft on Sept. 6, while the lowest tide is −1.0 ft on the same
day
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High and Low Tides 3

New Moon There was a New moon on September 6, 2002

The graphs show many local extrema for the month of
September

Usually four of them each day

Localize the search for the extrema using the visual
information from the graph

In the first week, the data show that the highest tide is 6.7
ft on Sept. 6, while the lowest tide is −1.0 ft on the same
day

So what does our model using four cosine functions predict
to be the highest and lowest tides of this week?
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High and Low Tides 4

Low Tide Prediction for September 6, 2002
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High and Low Tides 4

Low Tide Prediction for September 6, 2002

Parameters were fit for complete month of September and
given earlier
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High and Low Tides 4

Low Tide Prediction for September 6, 2002

Parameters were fit for complete month of September and
given earlier

Set h ′(t) = 0 and solved with a computer
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Change in Temperature

High and Low Tides 4

Low Tide Prediction for September 6, 2002

Parameters were fit for complete month of September and
given earlier

Set h ′(t) = 0 and solved with a computer

Low Tide Prediction
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Differentiation of Sine and Cosine

Basic Differentiation
General Rule of Differentiation
Examples
Damped Oscillator
High and Low Tides
Change in Temperature

High and Low Tides 4

Low Tide Prediction for September 6, 2002

Parameters were fit for complete month of September and
given earlier

Set h ′(t) = 0 and solved with a computer

Low Tide Prediction

The lowest tide of the first week from the model occurs
when tmin = 124.58 hrs with a h(tmin) = −0.86 ft

Joseph M. Mahaffy, 〈mahaffy@math.sdsu.edu〉
Lecture Notes – Differentiation of Trigonometric
— (32/44)



Introduction
Differentiation of Sine and Cosine

Basic Differentiation
General Rule of Differentiation
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High and Low Tides 4

Low Tide Prediction for September 6, 2002

Parameters were fit for complete month of September and
given earlier

Set h ′(t) = 0 and solved with a computer

Low Tide Prediction

The lowest tide of the first week from the model occurs
when tmin = 124.58 hrs with a h(tmin) = −0.86 ft
This corresponds to Sept. 6 at 4:35 am
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Basic Differentiation
General Rule of Differentiation
Examples
Damped Oscillator
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Change in Temperature

High and Low Tides 4

Low Tide Prediction for September 6, 2002

Parameters were fit for complete month of September and
given earlier

Set h ′(t) = 0 and solved with a computer

Low Tide Prediction

The lowest tide of the first week from the model occurs
when tmin = 124.58 hrs with a h(tmin) = −0.86 ft
This corresponds to Sept. 6 at 4:35 am
The actual low-low tide on Sept. 6 is −1.0 ft occurring at
3:35 am
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Introduction
Differentiation of Sine and Cosine

Basic Differentiation
General Rule of Differentiation
Examples
Damped Oscillator
High and Low Tides
Change in Temperature

High and Low Tides 4

Low Tide Prediction for September 6, 2002

Parameters were fit for complete month of September and
given earlier

Set h ′(t) = 0 and solved with a computer

Low Tide Prediction

The lowest tide of the first week from the model occurs
when tmin = 124.58 hrs with a h(tmin) = −0.86 ft
This corresponds to Sept. 6 at 4:35 am
The actual low-low tide on Sept. 6 is −1.0 ft occurring at
3:35 am
The model overshoots the tide height by about 0.14 feet
and misses the time by 60 minutes
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High and Low Tides 5

High Tide Prediction for September 6, 2002
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Change in Temperature

High and Low Tides 5

High Tide Prediction for September 6, 2002

Repeat process for High Tide
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High and Low Tides 5

High Tide Prediction for September 6, 2002

Repeat process for High Tide

High Tide Prediction
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High and Low Tides 5

High Tide Prediction for September 6, 2002

Repeat process for High Tide

High Tide Prediction

The highest tide of the first week from the model occurs
when tmax = 142.56 hrs with a h(tmax) = 6.40 ft

Joseph M. Mahaffy, 〈mahaffy@math.sdsu.edu〉
Lecture Notes – Differentiation of Trigonometric
— (33/44)



Introduction
Differentiation of Sine and Cosine

Basic Differentiation
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High and Low Tides 5

High Tide Prediction for September 6, 2002

Repeat process for High Tide

High Tide Prediction

The highest tide of the first week from the model occurs
when tmax = 142.56 hrs with a h(tmax) = 6.40 ft
This corresponds to Sept. 6 at 10:33 pm
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Basic Differentiation
General Rule of Differentiation
Examples
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High and Low Tides 5

High Tide Prediction for September 6, 2002

Repeat process for High Tide

High Tide Prediction

The highest tide of the first week from the model occurs
when tmax = 142.56 hrs with a h(tmax) = 6.40 ft
This corresponds to Sept. 6 at 10:33 pm
The actual high-high tide on Sept. 6 is 6.7 ft occurring at
9:36 pm
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Basic Differentiation
General Rule of Differentiation
Examples
Damped Oscillator
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Change in Temperature

High and Low Tides 5

High Tide Prediction for September 6, 2002

Repeat process for High Tide

High Tide Prediction

The highest tide of the first week from the model occurs
when tmax = 142.56 hrs with a h(tmax) = 6.40 ft
This corresponds to Sept. 6 at 10:33 pm
The actual high-high tide on Sept. 6 is 6.7 ft occurring at
9:36 pm
The model undershoots the tide height by about 0.3 feet
and misses the time by 57 minutes
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High and Low Tides 6

Graph of Tides: Model and Data
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High and Low Tides 7

Summary of Tide Model for September 2002
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Change in Temperature

High and Low Tides 7

Summary of Tide Model for September 2002

The calculations above show that our model introduces a
moderate error
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High and Low Tides 7

Summary of Tide Model for September 2002

The calculations above show that our model introduces a
moderate error

Model only uses four cosine functions to try to predict an
entire month of high and low tides
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High and Low Tides 7

Summary of Tide Model for September 2002

The calculations above show that our model introduces a
moderate error

Model only uses four cosine functions to try to predict an
entire month of high and low tides

This is a reasonable approach to the problem

Joseph M. Mahaffy, 〈mahaffy@math.sdsu.edu〉
Lecture Notes – Differentiation of Trigonometric
— (35/44)



Introduction
Differentiation of Sine and Cosine

Basic Differentiation
General Rule of Differentiation
Examples
Damped Oscillator
High and Low Tides
Change in Temperature

High and Low Tides 7

Summary of Tide Model for September 2002

The calculations above show that our model introduces a
moderate error

Model only uses four cosine functions to try to predict an
entire month of high and low tides

This is a reasonable approach to the problem

Obviously, the addition of more trigonometric functions
and more parameters can produce a much more accurate
model
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High and Low Tides 7

Summary of Tide Model for September 2002

The calculations above show that our model introduces a
moderate error

Model only uses four cosine functions to try to predict an
entire month of high and low tides

This is a reasonable approach to the problem

Obviously, the addition of more trigonometric functions
and more parameters can produce a much more accurate
model

Actual models use 12-14 trigonometric functions to model
tides
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High and Low Tides 7

Summary of Tide Model for September 2002

The calculations above show that our model introduces a
moderate error

Model only uses four cosine functions to try to predict an
entire month of high and low tides

This is a reasonable approach to the problem

Obviously, the addition of more trigonometric functions
and more parameters can produce a much more accurate
model

Actual models use 12-14 trigonometric functions to model
tides

The information line (619-221-8824) for the San Diego
Beach report gives tide information
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Basic Differentiation
General Rule of Differentiation
Examples
Damped Oscillator
High and Low Tides
Change in Temperature

Change in Temperature 1

Maximum Change in Temperature The sine function can
be used to approximate the temperature during a day

T (t) = A + B sin(ω(t − φ)),

with constants A, B ≥ 0, ω > 0, and φ ∈ [0, 24) are determined
from the data
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Basic Differentiation
General Rule of Differentiation
Examples
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Change in Temperature

Change in Temperature 1

Maximum Change in Temperature The sine function can
be used to approximate the temperature during a day

T (t) = A + B sin(ω(t − φ)),

with constants A, B ≥ 0, ω > 0, and φ ∈ [0, 24) are determined
from the data

Suppose that the coolest temperature for a day occurs at
3 am and is 56◦F
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Basic Differentiation
General Rule of Differentiation
Examples
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Change in Temperature

Change in Temperature 1

Maximum Change in Temperature The sine function can
be used to approximate the temperature during a day

T (t) = A + B sin(ω(t − φ)),

with constants A, B ≥ 0, ω > 0, and φ ∈ [0, 24) are determined
from the data

Suppose that the coolest temperature for a day occurs at
3 am and is 56◦F

Assume at 3 pm, the hottest temperature of 82◦F occurs
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General Rule of Differentiation
Examples
Damped Oscillator
High and Low Tides
Change in Temperature

Change in Temperature 2

Maximum Change in Temperature The Temperature is
modeled by

T (t) = A + B sin(ω(t − φ)),
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Introduction
Differentiation of Sine and Cosine

Basic Differentiation
General Rule of Differentiation
Examples
Damped Oscillator
High and Low Tides
Change in Temperature

Change in Temperature 2

Maximum Change in Temperature The Temperature is
modeled by

T (t) = A + B sin(ω(t − φ)),

Find the constants that best fit the data for the
temperature during the day assuming that the temperature
has a 24 hour period
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Maximum Change in Temperature The Temperature is
modeled by

T (t) = A + B sin(ω(t − φ)),

Find the constants that best fit the data for the
temperature during the day assuming that the temperature
has a 24 hour period

Determine the times during the day that the temperature
is rising most rapidly and falling most rapidly
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Basic Differentiation
General Rule of Differentiation
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Damped Oscillator
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Change in Temperature 2

Maximum Change in Temperature The Temperature is
modeled by

T (t) = A + B sin(ω(t − φ)),

Find the constants that best fit the data for the
temperature during the day assuming that the temperature
has a 24 hour period

Determine the times during the day that the temperature
is rising most rapidly and falling most rapidly

Give the rate of change of temperature at those times
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Solution: The temperature during a day

T (t) = A + B sin(ω(t − φ))
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Solution: The temperature during a day

T (t) = A + B sin(ω(t − φ))

The average temperature is

A = (56 + 82)/2 = 69◦F
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Change in Temperature 3

Solution: The temperature during a day

T (t) = A + B sin(ω(t − φ))

The average temperature is

A = (56 + 82)/2 = 69◦F

The amplitude of this function is found from the difference
between the high temperature and the average temperature

B = 82 − 69 = 13◦F
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The average temperature is

A = (56 + 82)/2 = 69◦F

The amplitude of this function is found from the difference
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B = 82 − 69 = 13◦F
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Differentiation of Sine and Cosine

Basic Differentiation
General Rule of Differentiation
Examples
Damped Oscillator
High and Low Tides
Change in Temperature

Change in Temperature 3

Solution: The temperature during a day

T (t) = A + B sin(ω(t − φ))

The average temperature is

A = (56 + 82)/2 = 69◦F

The amplitude of this function is found from the difference
between the high temperature and the average temperature

B = 82 − 69 = 13◦F

The 24 hour periodicity gives

24ω = 2π or ω =
π

12
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Solution (cont): The temperature during a day

T (t) = 69 + 13 sin
(

π
12(t − φ)

)
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Change in Temperature 4

Solution (cont): The temperature during a day

T (t) = 69 + 13 sin
(

π
12(t − φ)

)

The maximum occurs at 3 pm or t = 15
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Change in Temperature 4

Solution (cont): The temperature during a day

T (t) = 69 + 13 sin
(

π
12(t − φ)

)

The maximum occurs at 3 pm or t = 15

The maximum of the sine function occurs at π
2

Joseph M. Mahaffy, 〈mahaffy@math.sdsu.edu〉
Lecture Notes – Differentiation of Trigonometric
— (39/44)



Introduction
Differentiation of Sine and Cosine

Basic Differentiation
General Rule of Differentiation
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Damped Oscillator
High and Low Tides
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Change in Temperature 4

Solution (cont): The temperature during a day

T (t) = 69 + 13 sin
(

π
12(t − φ)

)

The maximum occurs at 3 pm or t = 15

The maximum of the sine function occurs at π
2

The phase shift, φ, solves

π

12
(15 − φ) =

π

2
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Basic Differentiation
General Rule of Differentiation
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Change in Temperature 4

Solution (cont): The temperature during a day

T (t) = 69 + 13 sin
(

π
12(t − φ)

)

The maximum occurs at 3 pm or t = 15

The maximum of the sine function occurs at π
2

The phase shift, φ, solves

π

12
(15 − φ) =

π

2

It follows that

15 − φ = 6 or φ = 9 hr
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Graph of Temperature Model
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T(t) = 69 + 13 sin(π(t−9)/12)
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Change in Temperature 6

Solution (cont): Graph shows temperature is rising most
rapidly in the morning and falling most rapidly in the evening
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Change in Temperature 6

Solution (cont): Graph shows temperature is rising most
rapidly in the morning and falling most rapidly in the evening

Model is
T (t) = 69 + 13 sin

(

π
12(t − 9)

)
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Differentiation of Sine and Cosine

Basic Differentiation
General Rule of Differentiation
Examples
Damped Oscillator
High and Low Tides
Change in Temperature

Change in Temperature 6

Solution (cont): Graph shows temperature is rising most
rapidly in the morning and falling most rapidly in the evening

Model is
T (t) = 69 + 13 sin

(

π
12(t − 9)

)

The derivative satisfies

T ′(t) =
13π

12
cos

(

π
12(t − 9)

)
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Change in Temperature

Change in Temperature 7

Graph of Derivative of Temperature Model
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T’(t) = (13π/12) cos(π(t−9)/12)
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Solution (cont): The derivative is

T ′(t) =
13π

12
cos

(

π
12(t − 9)

)
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Damped Oscillator
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Change in Temperature

Change in Temperature 8

Solution (cont): The derivative is

T ′(t) =
13π

12
cos

(

π
12(t − 9)

)

Find the maximum rate of change by properties of T ′(t)
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Solution (cont): The derivative is

T ′(t) =
13π

12
cos

(

π
12(t − 9)

)

Find the maximum rate of change by properties of T ′(t)

Cosine has maximum when argument is zero, when t = 9
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General Rule of Differentiation
Examples
Damped Oscillator
High and Low Tides
Change in Temperature

Change in Temperature 8

Solution (cont): The derivative is

T ′(t) =
13π

12
cos

(

π
12(t − 9)

)

Find the maximum rate of change by properties of T ′(t)

Cosine has maximum when argument is zero, when t = 9

Maximum increase at 9 am with

T ′(9) =
13π

12
cos(0) =

13π

12
≈ 3.4◦F/hr
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Change in Temperature 8

Solution (cont): The derivative is

T ′(t) =
13π

12
cos

(

π
12(t − 9)

)

Find the maximum rate of change by properties of T ′(t)

Cosine has maximum when argument is zero, when t = 9

Maximum increase at 9 am with

T ′(9) =
13π

12
cos(0) =

13π

12
≈ 3.4◦F/hr

Minimum increase 12 hours later with t = 21, so

T ′(21) =
13π

12
cos(π) = −

13π

12
≈ −3.4◦F/hr
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Alternate Solution: The maximum and minimum rate of
change occurs when second derivative is zero

T ′′(t) = −
13π2

144
sin

(

π
12(t − 9)

)
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Alternate Solution: The maximum and minimum rate of
change occurs when second derivative is zero

T ′′(t) = −
13π2

144
sin

(

π
12(t − 9)

)

The sine function is zero when the argument is nπ
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Change in Temperature 9

Alternate Solution: The maximum and minimum rate of
change occurs when second derivative is zero

T ′′(t) = −
13π2

144
sin

(

π
12(t − 9)

)

The sine function is zero when the argument is nπ

Solve
π

12
(t − 9) = nπ, n = 0, 1, ...
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Change in Temperature 9

Alternate Solution: The maximum and minimum rate of
change occurs when second derivative is zero

T ′′(t) = −
13π2

144
sin

(

π
12(t − 9)

)

The sine function is zero when the argument is nπ

Solve
π

12
(t − 9) = nπ, n = 0, 1, ...

Thus,
t = 9 + 12n n = 0, 1, ...
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Basic Differentiation
General Rule of Differentiation
Examples
Damped Oscillator
High and Low Tides
Change in Temperature

Change in Temperature 9

Alternate Solution: The maximum and minimum rate of
change occurs when second derivative is zero

T ′′(t) = −
13π2

144
sin

(

π
12(t − 9)

)

The sine function is zero when the argument is nπ

Solve
π

12
(t − 9) = nπ, n = 0, 1, ...

Thus,
t = 9 + 12n n = 0, 1, ...

This gives same result as before
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