\qquad
Lab Section \qquad

1. (20pts) Differentiate the following functions (you don't have to simplify):
a. $f(x)=7 x^{3}-\frac{5}{e^{2 x}}+\left(x^{3}-5 x\right) \ln (x)$.
$f^{\prime}(x)=$ \qquad
b. $g(t)=10 e^{t / 5}-\frac{t^{2}+5}{2-e^{-t}}+\frac{8}{\sqrt{t}}$.
$g^{\prime}(t)=$ \qquad
2. (35pts) Give the derivative of the function. Find the x and y-intercepts and any asymptotes. Determine all extrema, maxima and minima (including the x and y values). Sketch the function.
a. $y=12 x-x^{3}$,
$y^{\prime}(x)=$ \qquad
x-intercepts are
Sketch the graph.
y-intercept is \qquad
$\left(x_{1 c}, y\left(x_{1 c}\right)\right)=$ \qquad
Max or Min \qquad
$\left(x_{2 c}, y\left(x_{2 c}\right)\right)=$ \qquad
Max or Min \qquad
b. $y=(x+2) e^{-0.2 x}$.
$y^{\prime}(x)=$ \qquad
x-intercept is \qquad y-intercept is \qquad
Vertical Asymptote at $x=$ \qquad
(Write "None" if it doesn't exist.)
Horizontal Asymptote at $y=$ \qquad
$\left(x_{1 c}, y\left(x_{1 c}\right)\right)=$ \qquad Sketch the graph.

Max or Min \qquad
3. (25pts) Davies and Smith (1997) (Global Ecology and Biogeography 7, p. 285-294) collected data on Lepidoptera in the West Indies. They gathered a large amount of data, but we will examine only a couple pieces of information from their data set. They found that on the Biminis with an area (A) of $22 \mathrm{~km}^{2}$ there were 20 species (N) of butterflies, while $S t$. Lucia with an area of $617 \mathrm{~km}^{2}$ there were 48 species of butterflies. (Give all answers to 4 significant figures.)
a. A linear model for the number of species (N) as a function of the area (A) is given by

$$
N=m A+b
$$

for some constants m and b. Find the constants m and b. Use this model to predict the number of species on Grenada with an area of $345 \mathrm{~km}^{2}$. Also, estimate the area of Puerto Rico with this model given that it has 97 species of butterflies.
$m=$ \qquad
$b=$ \qquad
If $A=345 \mathrm{~km}^{2}$, then $N=$ \qquad species,

If $N=97$ species, then $A=$ \qquad km^{2}.
b. An allometric model for the number of species (N) as a function of the area (A) is given by

$$
N=k A^{a}
$$

for some constants k and a. Find the constants k and a. Use this model to predict the number of species on Grenada with an area of $345 \mathrm{~km}^{2}$. Also, estimate the area of Puerto Rico with this model given that it has 97 species of butterflies.
$k=$ \qquad
$a=$ \qquad
If $A=345 \mathrm{~km}^{2}$, then $N=$ \qquad species,

If $N=97$ species, then $A=$ \qquad km^{2} 。
c. Which model provides the better estimate? Give a brief reason for your choice.
4. (20pts) a. A culture of bacteria satisfies the Malthusian growth equation

$$
P_{n+1}=1.014 P_{n}, \quad P_{0}=4000
$$

where n is in minutes. Give the general solution (in only n and P_{0}) for this growth equation and state its population after 60 minutes. Determine how long it takes for this culture to double.
$P_{n}=$ \qquad
$P_{60}=$ \qquad
Doubling time $=$ \qquad
b. Another culture of bacteria satisfies a similar Malthusian growth law,

$$
B_{n+1}=(1+r) B_{n} .
$$

Suppose that this culture doubles in 40 min and starts with 1000 bacteria. Find the general solution for this culture and determine what its population is after 60 min . long until the population of this bacteria is the same as the original culture from Part a. Give both the time and population when they are equal.
$r=$ \qquad
$B_{n}=$ \qquad
$B_{60}=$ \qquad
Populations equal at $n_{e q}=$ \qquad with $P_{n_{e q}}=B_{n_{e q}}=$ \qquad
5. (25pts) a. A normal subject is given a supply of air enriched with Helium. Assume her breathing satisfies the model,

$$
c_{n+1}=(1-q) c_{n}+q \gamma
$$

where c_{n} is the concentration of Helium, q is the fraction of air exchanged, and γ, the ambient concentration of Helium. Assume that $c_{0}=200 \mathrm{ppm}, q=0.16$, and $\gamma=5.2 \mathrm{ppm}$. Find the expected concentrates in the next two breaths c_{1} and c_{2} after breathing normally in the room, then determine the equilibrium concentration in her lungs after many breaths.
$c_{1}=\ldots \mathrm{ppm}$ and $c_{2}=\ldots \mathrm{ppm}$
Equilibrium concentration $c_{e}=$ \qquad ppm
b. A woman with a chronic lung problem undergoes the same test. Experimental measurements show the following concentrations of the exhaled air after she resumes normal breathing in the room.

Breath Number	0	1	2
Conc. of He (ppm)	200	176	155

There was a leak of Helium, so the concentration of Helium in the room is higher than before, but not known. It is assumed that γ is constant as is her breathing fraction, q. Use the data above to find the constants q and γ. Then determine the concentration of Helium in the next two breaths, c_{3} and c_{4}. Find the equilibrium concentration of Helium in this subject's lungs based on this breathing model. What is the stability of this equilibrium concentration? (If a solution moves closer to an equilibrium point, then it is probably stable. If it moves away, then it is most likely unstable.)
\square
$c_{3}=\ldots \mathrm{ppm}$ and $c_{4}=\ldots \mathrm{ppm}$
Equilibrium concentration $c_{e}=$ \qquad ppm

Stable or Unstable \qquad
6. (20pts) In lab we saw the experimental fit of O_{2} consumption (in $\mu \mathrm{l} / \mathrm{hr}$) after a blood meal by the beetle Triatoma phyllosoma. Below is a cubic polynomial fit to measurements for a different individual "kissing bug,"

$$
Y(t)=\frac{1}{3} t^{3}-\frac{13}{2} t^{2}+30 t+100
$$

where t is in hours, for $0 \leq t \leq 12$.
a. Find the rate of change in O_{2} consumption per hour, $\frac{d Y}{d t}$. What is the rate of change in the O_{2} consumption at $t=4$? Also, compute $Y^{\prime \prime}(t)$. When is the rate of change in O_{2} consumption per hour decreasing the most and what is that maximum rate of decline?
$Y^{\prime}(t)=$ \qquad

$$
Y^{\prime}(4)=
$$

$Y^{\prime \prime}(t)=$ \qquad
Rate of maximum decrease at $t_{\text {dec }}=$ \qquad $Y^{\prime}\left(t_{\text {dec }}\right)=$ \qquad
b. Use the derivative to find when the minimum and maximum O_{2} consumption for this beetle occurs during the experiment. Give the O_{2} consumption at those times.

$$
\begin{array}{ll}
t_{\max }= & Y\left(t_{\max }\right)= \\
t_{\min }= & Y\left(t_{\min }\right)= \\
\hline
\end{array}
$$

7. (30pts) a. It has been shown that iron is the primary limiting nutrient in open ocean waters. There are currently a number of experiments to see if seeding the ocean with iron can create an algal bloom that fixes CO_{2} (to remove this greenhouse gas). Soluable iron that is dumped into the ocean is rapidly used by algae, which are consumed by other organisms. At $t=0$, a research vessel from Scripps Institute of Oceanography dumps 500 kg of soluable iron. Measurements from a trailing ship indicate that the amount of iron remaining in the water (not in the algae) satisfies the equation:

$$
F(t)=500 e^{-0.23 t},
$$

where t is in days. Find how long it takes for the amount of soluable iron to reach the level of 100 kg remaining. Sketch a graph of F showing the F-intercept and the horizontal asymptote.
$F(t)=100$ when $t=$ \qquad
$F(0)=$ \qquad
Horizontal Asymptote at $F=$ \qquad
Sketch of graph.
b. Find the derivative $\frac{d F}{d t}$. Determine the rate of change of soluable iron at $t=2$.
$F^{\prime}(t)=$ \qquad $F^{\prime}(2)=$ \qquad
c. As noted above the algae rapidly blooms, then fades as the iron passes to organisms higher in the food web. Suppose that samples of the sea water give a population of algae, $P(t)$, (in thousands/cc) satisfying the following equation:

$$
P(t)=10\left(e^{-0.05 t}-e^{-0.8 t}\right),
$$

where t is in days. Find the derivative $\frac{d P}{d t}$. Find when the algal population achieves its maximum concentration and determine what its maximum concentration is. Find the P-intercept and any horizontal asymptotes.
$P^{\prime}(t)=$ \qquad
$t_{\text {max }}=$ \qquad $P\left(t_{\text {max }}\right)=$ \qquad
$P(0)=$ \qquad
Horizontal Asymptote at $P=$ \qquad
8. (25pts) Jacob and Monod developed the theory of genetic control by induction. This is a very important control made most famous by the lac operon. The enzyme β-galactosidase is induced to catalyze the break down of lactose into simple sugars (glucose and galactose) for energy in the cell. The rate of induction for β-galactosidase is given by the formula

$$
R(L)=\frac{V_{\max } L^{2}}{K+L^{2}},
$$

where L is the concentration of lactose and $V_{\max }$ and K are kinetic constants.
a. Suppose that $V_{\max }=100$ and $K=10$. Differentiate this rate function and also find its second derivative. Give both the L and R values for any points of inflection ($L \geq 0$).
$R^{\prime}(L)=$ \qquad
$R^{\prime \prime}(L)=$ \qquad

Point of inflection at $L_{p}=$ \qquad with $\quad R\left(L_{p}\right)=$ \qquad
b. Find any intercepts and asymptotes for $R(L)$.
L-intercept is \qquad R-intercept is \qquad
Vertical Asymptote at $L=$ \qquad Horizontal Asymptote at $R=$ \qquad (Write "None" if it doesn't exist.)
c. Find the maximum change in rate of induction, i.e., what value of L makes $R^{\prime}(L)$ have its largest value and what value is that maximum change in rate of induction?

Maximum induction at $L_{\max }=$ \qquad with $\quad R^{\prime}\left(L_{\text {max }}\right)=$ \qquad

