1. a. The solutions to the logistic growth models are

$$
\begin{aligned}
X(t) & =\frac{X_{0} M}{X_{0}+\left(M-X_{0}\right) e^{-r t}} \\
Y(t) & =\frac{Y_{0} N}{Y_{0}+\left(N-Y_{0}\right) e^{-s t}}
\end{aligned}
$$

The best fitting parameters to the data are given by:

$$
\begin{array}{rl}
X_{0}=0.6734 & Y_{0}=0.6341 \\
r=0.10987 & s=0.068094 \\
M=9.4992 & N=6.4139
\end{array}
$$

The sum of square errors for the model for species X is 0.033654 . The sum of square errors for the model for species Y is 0.040219 . The carrying capacities for species X and Y are 9.4992 and 6.4139 , respectively.
b. There are four equilibria for the system of differential equations. One is the trivial equilibrium $(0,0)$. Two are the extinction equilibria, extinction of Y at $(9.4992,0)$ and extinction of X at $(0,6.4139)$. Finally, the coexistence equilibrium is $(2.3587,3.30357)$.
c. The simulation of the system of differential equations gives the following values at the times listed.

$t(\mathrm{hr})$	Species X	Species Y
25	2.789	1.295
50	5.579	1.1456
100	8.923	0.1298
200	9.498	0.0001794

This model exhibits competitive exclusion, which for the given initial conditions leads to the extinction of species Y and the eventual leveling off of species X at a population of $9.4992(\times 1000 / \mathrm{cc})$. The maximum population of species Y occurs at $t=34 \mathrm{hr}$ with a population of $1.3872(\times 1000 / \mathrm{cc})$.
2. a. The solution to the damped oscillator is given by;

$$
y(t)==\frac{11}{15} e^{-t / 5} \sin (3 t)+e^{-t / 5} \cos (3 t)
$$

The first relative (and absolute) maximum occurs at ($0.18873,1.1915$), while the second (lower) relative maximum occurs at ($2.2831,0.78374$). The first relative (and absolute) minimum occurs at $(1.2359,-0.96635)$, while the second (lower) relative minimum occurs at $(3.3303,-0.63565)$.
b. We show the solution for the forced damped oscillator model with $k=9.01$ and $a=2.85$ is

$$
y(t)=-3.7037 e^{-0.1 t} \sin (3.0 t)+2.5617 e^{-0.1 t} \cos (3.0 t)+3.9886 \sin (2.85 t)-2.5617 \cos (2.85 t)
$$

It follows that $y(2)=-1.47363$ and $y(20)=-0.74289$. It is not hard to see that for $a=3.0$, we obtain $y(2)=-1.5206$ and $y(20)=6.8127$.

c. Below we show the plots of the 6 test sound signals and how they deflect the RLF.

From the figures we see that for $a=2.85$, the maximum response is between 5 and 5.5. For $a=3.0$, the maximum response is between 8 and 8.5 . For $a=3.15$, the maximum response is between 5 and 5.5 . For $a=3.3$, the maximum response is between 3.5 and 4 . For $a=3.45$, the maximum response is between 2.5 and 3 . For $a=3.6$, the maximum response is between 2 and 2.5 . The plots show that the only test sound that elicits a neural response is $a=3.0$ (which happens to be close to the \sqrt{k}).
d. For $k=12.01$, we show the plots of the 6 test sound signals and how they deflect the RLF.

From the figures we see that for $a=2.85$, the maximum response is between 1.5 and 2.0. For $a=3.0$, the maximum response is between 2 and 2.5 . For $a=3.15$, the maximum response is between 3 and 3.5. For $a=3.3$, the maximum response is about 4.5. For $a=3.45$, the maximum response is between 7 and 7.5 . For $a=3.6$, the maximum response is between 4.5 and 5 . The plots show that the only test sound that elicits a neural response is $a=3.45$ (which happens to be close to the \sqrt{k}).

