1. a. With the model given by

$$
G(t)=G_{0}+A e^{-\alpha t} \cos (\omega t+\delta)
$$

the first set of data gives the best fitting parameters $G_{0}=83.893, A=175.813, \alpha=0.9133$, $\omega=1.87045$, and $\delta=-1.63279$. It follows that best model is:

$$
G_{1}(t)=83.893+175.813 e^{-0.9133 t} \cos (1.87045 t-1.63279)
$$

The sum of square errors is 303.108 .
The second set of data gives the best fitting parameters $G_{0}=106.075, A=207.729$, $\alpha=0.4934, \omega=1.1133$, and $\delta=-1.5825$. It follows that best model is:

$$
G_{2}(t)=106.075+207.729 e^{-0.4934 t} \cos (1.1133 t-1.5825)
$$

The sum of square errors is 781.406.
b. Below are graphs of the data for the models fitting these patients. The absolute maximum for $G_{1}(t)$ is $t_{\max }=0.63010 \mathrm{hr}$ with $G_{1}\left(t_{\max }\right)=172.751 \mathrm{mg} / \mathrm{dl}$ of blood, while the absolute minimum is $t_{\text {min }}=2.3097 \mathrm{hr}$ with $G_{1}\left(t_{\min }\right)=64.728 \mathrm{mg} / \mathrm{dl}$ of blood. The absolute maximum for $G_{2}(t)$ is $t_{\max }=1.0467 \mathrm{hr}$ with $G_{2}\left(t_{\max }\right)=219.38 \mathrm{mg} / \mathrm{dl}$ of blood, while the absolute minimum is $t_{\text {min }}=3.8686 \mathrm{hr}$ with $G_{1}\left(t_{\min }\right)=77.918 \mathrm{mg} / \mathrm{dl}$ of blood.

$G_{1}(t)$ and data

$G_{1}(t)$ and data
c. From the model for the first patient, $G_{1}(t), \omega_{0}=\sqrt{\omega^{2}+\alpha^{2}}=2.0815$. Since $2 \pi / \omega_{0}=$ $3.0186<4$, this patient is normal. From the model for the second patient, $G_{2}(t), \omega_{0}=$ $\sqrt{\omega^{2}+\alpha^{2}}=1.218$. Since $2 \pi / \omega_{0}=5.160>4$, this patient is diabetic.
2. a. The solution for the simple model for pollution in Lake Erie is given by:

$$
c(t)=k+\left(c_{0}-k\right) e^{-\frac{35}{92} t}
$$

b. Using the data from the table, we find that the best fitting constants are $k=4.8695$ and $c_{0}=2.0092$ with the sum of square errors being 0.031842 . It follows that the best fitting solution is given by

$$
c(t)=4.8695-2.8603 e^{-\frac{35}{92} t}
$$

c. The solution for this problem where we let the time at Year 5 be $t=0$ is

$$
c(t)=4.5 e^{-\frac{35}{92} t}
$$

It follows that the concentration of pollutant drops to half the amount in Year 5 when $t=1.8220$ or less than two years later. $c(5)=0.67160 \mathrm{ppm}$ and $c(10)=0.10023 \mathrm{ppm}$.
d. From the Euler solution, we find the approximate solution at $t=1$ is $c(1) \simeq 4.41358$, $t=2$ is $c(2) \simeq 4.16112, t=3$ is $c(3) \simeq 3.82444, t=5$ is $c(5) \simeq 3.08262, t=7$ is $c(7) \simeq 2.39577$, and $t=10$ is $c(10) \simeq 1.58579$. It is easy to see that these values are substantially higher than the ones in Part c.
e. From Maple's dsolve, the solution of the modified model for loss of pollution after a ban takes place is given by:

$$
c(t)=7.4292 e^{-0.15 t}-2.9292 e^{-\frac{35}{92} t}
$$

This modified model takes $t=7.4766$ years for the pollutant level to fall to half the concentration in Year 5. The solution at $t=10$ is $c(10)=1.5924$. The percent error between the Euler approximation in Part c and the actual solution is given by

$$
100 \frac{(1.58579-1.5924)}{1.5924}=-0.415 \%
$$

