
Fall 2012 Solutions Review Exam 3

1. a. Rewrite the second integral as a power, then
∫ (

6 cos(3x)− 2
x3

)
dx = 6

∫
cos(3x)dx− 2

∫
x−3dx

= 6
sin(3x)

3
− 2

x−2

−2
+ C = 2 sin(3x) +

1
x2

+ C

b. These are basic integral forms
∫ (

4x + e−3x
)

dx = 4
∫

x dx +
∫

e−3xdx

= 4
x2

2
+

e−3x

−3
+ C = 2x2 − 1

3
e−3x + C

c. The first integral is written as a power, while the second integral uses the substitution
u = 3x− 2, so du = 3 dx.

∫ (
3x−2 + 3 cos(3x− 2)

)
dx = 3

∫
x−2dx +

∫
cos(u)du

= 3
x−1

−1
+ sin(u) + C = − 3

x
+ sin(3x− 2) + C

d. Let u = −x2, so du = −2x dx.

∫ (
2x e−x2 − 4x

)
dx = −

∫
eu du− 4

x2

2
= −eu − 2 x2 + C = −e−x2 − 2x2 + C

e. Rewrite the second integral as a power, then
∫ (

4e−2x +
3√
x

)
dx = −2e−2x + 3

∫
x−1/2dx

= −2e−2x + 6
√

x + C

f. Expand the squared term, then
∫ (

5x2 − 1
)2

dx =
∫ (

25 x4 − 10x2 + 1
)

dx

= 5 x5 − 10
3

x3 + x + C



g. Let u = x2 + 4 x− 5, so du = (2x + 4) dx = 2(x + 2) dx.
∫ (

x2 + 4 x− 5
)3

(x + 2)dx =
1
2

∫ (
x2 + 4 x− 5

)3
2(x + 2)dx

=
1
2

∫
u3du

=
1
8
u4 + C =

1
8
(x2 + 4 x− 5)4 + C

h. Let u = sin(4x), so du = 4 cos(4x), dx.
∫ (

7
x

+ 8 sin3(4x) cos(4x)
)

dx = 7 ln(x) + 2
∫

u3 du

= 7 ln(x) +
u4

2
+ C = 7 ln(x) +

sin4(4x)
2

+ C

2. a. This is a time varying differential equation. It can be written

y(t) =
∫ (

1 + e−t
)

dt = t− e−t + C.

The initial condition y(0) = 3 = −1+C, which implies C = 4. Hence, the solution is y(t) = t− e−t + 4.

b. This is a time varying differential equation. It can be written

y(t) =
∫ (

2− 4
t

)
dt = 2 t− 4 ln(t) + C.

The initial condition y(1) = 5 = 2+C, which implies C = 3. Hence, the solution is y(t) = 2 t− 4 ln(t) + 3.

c. This is a separable differential equation. It can be written
∫

2y dy =
∫

3t2 dt or y2 = t3 + C.

It follows that y(t) = ±√t3 + C. The initial condition y(0) = 4 =
√

C, which implies C = 16.
Hence, the solution is

y(t) =
√

t3 + 16.

d. This is a linear differential equation, which can be written

dy

dt
= −0.02(y − 100).

With the substitution z(t) = y(t)− 100, we have

dz

dt
= −0.02z, z(0) = y(0)− 100 = −95.



Thus, z(t) = −95 e−0.02 t. It follows that

y(t) = 100− 95 e−0.02 t.

e. This is a separable differential equation. It can be written
∫

dy

y
=

∫ 2 t dt

t2 + 1
.

The right integral uses the substitution u = t2 + 1, so du = 2 t dt. Hence,

ln |y(t)| =
∫

du

u
= ln |u|+ C = ln(t2 + 1) + C

y(t) = eln(t2+1)+C = A(t2 + 1),

where A = eC . The initial condition y(0) = 3 = A, which implies A = 3. Hence, the solution is

y(t) = 3(t2 + 1).

f. This is a separable differential equation. It can be written
∫

dy

y
=

∫
(2− 0.2t)dt or ln |y| = 2 t− 0.1 t2 + C.

It follows that y(t) = e2 t−0.1 t2+C = Ae2 t−0.1 t2 with A = eC . The initial condition y(0) = 10 = A,
which implies A = 10. Hence, the solution is

y(t) = 10 e2 t−0.1 t2 .

g. This is a time-varying differential equation, so we integrate giving

y(t) =
∫

(4− 2 sin(2(t− 3)))dt = 4 t− 2
∫

sin(2(t− 3))dt.

With the substitution u = 2(t− 3) and du = 2 dt, we have

y(t) = 4 t−
∫

sin(u)du = 4 t + cos(u) + C = 4 t + cos(2(t− 3)) + C.

With the initial condition y(3) = 5, 12 + cos(0) + C = 5 or C = −8. It follows that

y(t) = 4 t + cos(2(t− 3))− 8.

h. This is a separable differential equation. It can be written
∫

eydy =
∫

etdt or ey = et + C.



It follows that y(t) = ln(et + C). The initial condition y(0) = 6 = ln(1 + C), which implies
C = e6 − 1. Hence, the solution is

y(t) = ln(et + e6 − 1).

3. a. Since the acceleration of gravity is −32 ft/sec2, the velocity of the ball is the integral, giving
v(t) = −32t + C, which when combined with the initial condition v(0) = 48, gives v(t) = 48− 32 t.
The velocity is integrated to give the height of the ball

h(t) =
∫

v(t) dt =
∫

(−32 t + 48)dt = −16 t2 + 48 t + C.

With the initial height, h(0) = 160, so h(t) = −16 t2 + 48 t + 160. The maximum occurs when
v(t) = 0, so t = 3/2 sec. It follows that the maximum height of the ball is h(3/2) = 196 ft.

b. The ball hits the ground when h(t) = −16(t2 − 3t − 10) = −16(t + 2)(t − 5) = 0, so at
t = 5 sec. The velocity is v(5) = −112 ft/sec.

c. The graph for the height of the ball is shown below for t ≥ 0.
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4. Integrating the acceleration due to gravity as in the previous problem, we see that the velocity
is given by v(t) = v0 − 32 t. Similarly, the height is the integral of the velocity (as above), so
h(t) =

∫
(v0 − 32 t)dt = −16 t2 + v0t, where the integration constant is zero, since the initial height

is zero. The maximum height occurs when the velocity is zero, so t = v0/32. But

h(v0/32) =
v2
0

32
− v2

0

64
=

v2
0

64
= 8.

It follows that v2
0 = 512 or v0 = 16

√
2, which is the initial upward velocity. The length of time

that the kangeroo stays in the air is twice the length of time to reach the maximum, so it stays in
the air for t =

√
2 sec.



5. The differential equation is separable, so write
∫

T−
1
2 dT = k

∫
dt or 2T

1
2 (t) = kt + C.

It follows that

T (t) =
(

kt + C

2

)2

.

The initial condition T (0) = 1 implies C = 2, so T (t) =
(

kt
2 + 1

)2
. Since T (4) =

(
4 k
2 + 1

)2
= 25,

2 k + 1 = 5 or k = 2. Thus, the solution for the spread of the disease in this orchard is

T (t) = (t + 1)2.

When t = 10, T (10) = 121.

6. a. The differential equation for Gompertz law of growth is separable. The solution can be found
as follows, where we solve the complicated integral with the substitution of u = ln

(
N

2000

)
, so

du = dN
N .

dN

dt
= −0.1N ln

(
N

2000

)

∫ (
ln

(
N

2000

))−1 dN

N
= −0.1

∫
dt = −0.1 t + C

∫
u−1du = ln |u| = ln

(
ln

(
N(t)
2000

))
= −0.1 t + C

ln
(

N(t)
2000

)
= e−0.1 t+C = Ae−0.1 t

N(t)
2000

= eAe−0.1 t

N(t) = 2000 eAe−0.1 t

The initial condition is N(0) = 10, so 10 = 2000eA or A = − ln(200). Thus, the solution is given
by

N(t) = 2000 e− ln(200)e−0.1 t
.

b. For large time, e−0.1 t → 0, so N(t) → 2000e0 = 2000 (in thousands). Hence, N(t) → 2000 is
a carrying capacity, which means that the tumor levels off with a population of 2 million cells.

7. a. The solution of the Mathusian growth model is B(t) = 1000 e0.01 t. The population doubles
when the bacteria reaches 2000, so 1000 e0.01 t = 2000 or e0.01 t = 2. Thus, 0.01 t = ln(2) or
t = 100 ln(2) ' 69.3 min for the population to double.

b. The model with time-varying growth is a separable differential equation, so

dB

dt
= 0.01(1− e−t) B

∫
dB

B
= 0.01

∫
(1− e−t)dt

ln |B(t)| = 0.01(t + e−t) + C

B(t) = Ae0.01(t+e−t),



where A = eC . With the initial condition, B(0) = 1000 = A e0.01 or A = 1000 e−0.01. Thus, the
solution to this time-varying growth model is

B(t) = 1000 e0.01(t+e−t−1).

c. The Malthusian growth model gives B(5) = 1051 and B(60) = 1822, while the modified
growth model gives B(5) = 1041 and B(60) = 1804.

8. a. The solution to the Malthusian growth model is given by P (t) = 100 e0.2 t. This population
doubles when 100 e0.2 t = 200 or e0.2 t = 2, so t = 5 ln(2) ' 3.466 yrs.

b. This model, including the modification for habitat encroachment, is a separable differential
equation. It can be written

∫
dP

P
=

∫
(0.2− 0.02t)dt or ln |P | = 0.2 t− 0.01 t2 + C.

It follows that P (t) = e0.2 t−0.01 t2+C = Ae0.2 t−0.01 t2 . The initial condition P (0) = 100 = A, which
implies A = 100. Hence, the solution satisfies

P (t) = 100 e0.2 t−0.01 t2 .

c. We find the maximum by differentiating and setting it equal to zero,

P ′(t) = 100 e0.2 t−0.01 t2(0.2− 0.02t) = 0.

So 0.2 − 0.02t = 0, which implies that t = 10. Thus, the maximum of population is P (10) =
100 e ' 271.8. If we solve P (t) = 100 e0.2 t−0.01 t2 = 100, then this is equivalent to e0.2 t−0.01 t2 = 1
or 0.2 t− 0.01 t2 = −0.01 t(t− 20) = 0. Thus, either t = 20 (or 0), so the population returns to 100
after 20 years. The graph of the population can be seen below.
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9. a. This population of cells in a declining medium satisfies a separable differential equation, which
can be written∫

P−2/3dP =
∫

0.3 e−0.01tdt or 3P 1/3(t) = −30 e−0.01t + 3C.



It follows that P 1/3(t) = −10 e−0.01t + C, so P (t) =
(
C − 10 e−0.01t

)3. The initial condition P (0) =
1000 = (C − 10)3, which implies C = 20. The solution is given by

P (t) =
(
20− 10e−0.01 t

)3
.

b. This population doubles when P (t) =
(
20− 10e−0.01 t

)3 = 2000, so 20− 10e−0.01 t = 10 3
√

2 or
e−0.01 t = 2− 3

√
2. It follows that t = 100 ln

(
1

2− 3√2

)
' 30.1 hr. For large t, limt→∞ e−0.01 t = 0, so

limt→∞ P (t) = 203 = 8000. Thus, there is a horizontal asymptote at P = 8000, so the population
tends towards this value. The graph of the population can be seen below.
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10. a. The change in amount of phosphate, P (t), is found by adding the amount entering and
subtracting the amount leaving.

dP

dt
= 200 · 10− 200 · c(t),

where c(t) is the concentration in the lake with c(t) = P (t)/10, 000. By dividing the equation by
the volume, the concentration equation is given by

dc

dt
= 0.2− 0.02c = −0.02(c− 10), c(0) = 0.

With the substitution z(t) = c(t)− 10, the equation above reduces to the problem

dz

dt
= −0.02z, z(0) = −10,

which has the solution z(t) = −10 e−0.02 t. Thus, the concentration is given by

c(t) = 10− 10 e−0.02 t.

b. The differential equation describing the growth of the algae is given by

dA

dt
= 0.5(1− e−0.02 t)A2/3.



By separating variables, we see
∫

A−2/3dA = 0.5
∫

(1− e−0.02 t)dt

3A1/3(t) = 0.5(t + 50 e−0.02 t) + C

A(t) =

(
0.5(t + 50 e−0.02 t) + C

3

)3

From the initial condition A(0) = 1000, we have 1000 =
(

25+C
3

)3
. It follows that C = 5, so

A(t) =

(
t + 50 e−0.02 t + 10

6

)3

.

11. a. The equation for the weight of the swordfish is a linear differential equation, so we first write
dw

dt
= 0.015(1000− w) = −0.015(w − 1000). We make the substitution z(t) = w(t) − 1000, giving

the differential equation
dz

dt
= −0.015z with the initial condition z(0) = w(0) − 1000 = −1000.

Thus, z(t) = −1000 e−0.015 t. It follows that w(t) = 1000 − 1000 e−0.015 t. The swordfish reaches
70 kg when 1000− 1000 e−0.015 t = 70 or e0.015 t = 1000

930 . Thus, it takes t = 200
3 ln

(
100
93

)
' 4.838 yrs

to reach maturity.

b. The mercury (Hg) accumulates in swordfish according to the differential equation, which is
a time varying equation. It follows that upon integration that

H(t) = 0.01
∫

(1000− 1000 e−0.015 t)dt

= 10t +
2000

3
e−0.015 t + C

With the initial condition H(0) = 0, the solution becomes

H(t) = 10t +
2000

3
e−0.015 t − 2000

3
.

From this equation, it follows that H(3) = 0.665 and H(20) = 27.2 mg of Hg.

c. The formula for the concentration of Hg, c(t) (in µg/g) in swordfish satisfies

c(t) = H(t)/w(t) =
10t + 2000

3 e−0.015 t − 2000
3

1000− 1000 e−0.015 t
.

It follows that c(3) = 0.0151 and c(20) = 0.105 µg/g.

12. a. Write the differential equation
dw

dt
= −0.2(w − 80), then z(t) = w(t)− 80. It follows that

dz

dt
= −0.2z, z(0) = −80,



with the solution z(t) = −80e−0.2t = w(t)− 80. Thus,

w(t) = 80
(
1− e−0.2t

)
.

For a 40 kg alligator, w(t) = 40 = 80
(
1− e−0.2t

)
or 40 = 80e−0.2t, so e0.2t = 2 or 0.2t = ln(2).

Thus, t = 5 ln(2) ' 3.47 years.

b. The pesticide accumulation is given by

dP

dt
= 600

(
80

(
1− e−0.2t

))
, P (0) = 0.

The solution is given by

P (t) = 48, 000
∫ (

1− e−0.2t
)

dt = 48, 000
(
t + 5e−0.2t

)
+ C.

The initial condition gives P (0) = 0 = 240, 000 + C, so C = −240, 000. Hence,

P (t) = 48, 000
(
t + 5e−0.2t

)
− 240, 000.

The amount of pesticide in the alligator at age 5 is P (5) = 48, 000
(
5 + 5e−1

) − 240, 000 =
240, 000e−1 ' 88291 µg.

c. The pesticide concentration for a 5 year old alligator is

c(5) =
P (5)

1000w(5)
=

88, 291
80, 000 (1− e−1)

' 1.75 ppm.

13. a. The differential equation can be written:

dc

dt
= −0.004(c− 15),

so we make the substitution z(t) = c(t) − 15. Since c(0) = 0, it follows that z(0) = −15. The
solution of the substituted equation is given by:

z(t) = −15e−0.004t = c(t)− 15
c(t) = 15− 15e−0.004t.

The limiting concentration satisfies:

lim
t→∞ c(t) = 15 mg/m3.

b. We begin by separating variables, which gives:
∫

dc

c− 15
= −0.001

∫
(4− cos(0.0172t)) dt

ln(c(t)− 15) = −0.001
(

4t− sin(0.0172t)
0.0172

)
+ C

c(t) = 15 + Ae−0.001
(
4t− sin(0.0172t)

0.0172

)



It is easy to see that the initial condition c(0) = 0 implies that A = −15. Thus, the solution to this
problem is given by:

c(t) = 15− 15 e−0.001
(
4t− sin(0.0172t)

0.0172

)

14. a. Substituting the parameters into the differential equation gives

dc(t)
dt

=
200

10000
(10− c) = −0.02(c− 10).

We make the substitution z(t) = c(t)− 10, which gives the initial value problem z′ = −0.02z with
z(0) = c(0)− 10 = −10. The solution of this differential equation is z(t) = −10e−0.02t = c(t)− 10,
so

c(t) = 10− 10e−0.02t.

We solve the equation c(t) = 10− 10e−0.02t = 2, so e0.02t = 10/8 or t = 50 ln(10/8) = 11.2 days.

b. The Euler’s formula with the linearly increasing pollutant level is given by

cn+1 = cn + h(0.02(10 + 0.1tn − cn)) = cn + 0.2 + 0.002tn − 0.02cn,

with h = 1. Iterating this, we create a table

t0 = 0 c0 = 0
t1 = 1 c1 = c0 + 0.2 + 0.002t0 − 0.02c0 = 0.2
t2 = 2 c2 = c1 + 0.2 + 0.002t1 − 0.02c1 = 0.398

The approximate solution is c2 = 0.398 ppb.

15. a. We separate variables, so
∫

M−3/4dM = −k

∫
dt

4M1/4 = −kt + 4C

M(t) =
(

C − k

4
t

)4

From the initial condition, M(0) = 16 = C4, it follows that C = 2. From the information that
M(10) = 1 = (2− 10k/4)4, we have k = 0.4. The fruit vanishes in 20 days.

b. We separate variables again to find:
∫

M−3/4dM = −0.8
∫

e−0.02tdt

4M1/4 =
0.8
0.02

e−0.02t + 4C

M(t) =
(
10e−0.02t + C

)4

From the initial condition, M(0) = 16 = (10 + C)4, it follows that C = −8. Solving 10e−0.02t = 8,
which is when the fruit vanishes, we find t = 50 ln(5/4). Thus, the fruit vanishes in 11.157 days.



16. a. The general solution to the Malthusian growth problem with the initial condition P (0) = 60
is

P (t) = 60 ert.

We are given that 2 weeks later P (2) = 80 = 60 e2r, so it follows that r = 1
2 ln

(
4
3

)
= 0.14384. This

gives the solution:
P (t) = 60 e0.14384 t.

It is easy to see that the population doubles when 120 = 60 e0.14384 t, so 0.14384 td = ln(2) or the
doubling time is

td =
ln(2)

r
= 4.819 weeks.

b. We begin by separating variables, so the general solution satisfies:
∫

dP

P
=

∫
(a− b t) dt

ln(P (t)) = a t− bt2

2
+ C

P (t) = eCea t− bt2

2 .

Since the initial value is P (0) = 60, it follows that eC = 60. Thus,

P (t) = 60 ea t− bt2

2 .

We now use the data at t = 2 and 4 weeks. It follows from the solution above that

80 = 60 e2 a−2 b

90 = 60 e4 a−8 b.

We rearrange the terms and take logarithms of both sides to get

2 a− 2 b = ln
(

4
3

)

4 a− 8 b = ln
(

3
2

)
.

We solve these equations simultaneously to obtain

2 b = ln
(

4
3

)
− 1

2
ln

(
3
2

)
,

so b = 0.042475. But a = b + 1
2 ln(4/3) or a = 0.1863. It follows that the solution is

P (t) = 60 e0.1863 t−0.021237 t2 .

The population reaches a maximum when the derivative is zero, which occurs when tmax = a
b =

4.3865, so the maximum population is P (tmax) = 90.286.



17. a. With n = 2 and x ∈ [0, 2], the midpoints of the interval are x1 = 1
2 and x2 = 3

2 and ∆x = 1.
Thus, the midpoint rule gives

∫ 2

0
(2x− x2)dx '

((
2
1
2
−

(
1
2

)2
)

+

(
2
3
2
−

(
3
2

)2
))

· 1 = 1.5.

With n = 2, the trapezoid rule gives
∫ 2

0
(2x− x2)dx '

(
1
2
(0) + (2− 1) +

1
2
(0)

)
· 1 = 1.

b. With n = 4 and x ∈ [0, 2], the midpoints of the interval are x1 = 1
4 , x2 = 3

4 , x3 = 5
4 , and

x4 = 7
4 and ∆x = 1

2 . Thus, the midpoint rule gives

∫ 2

0
(2x−x2)dx '

((
2
1
4
−

(
1
4

)2
)

+

(
2
3
4
−

(
3
4

)2
)

+

(
2
5
4
−

(
5
4

)2
)

+

(
2
7
4
−

(
7
4

)2
))

·1
2

= 1.375.

With n = 4, the trapezoid rule gives
∫ 2

0
(2x− x2)dx '

(
1
2
0 +

(
1− 1

4

)
+ (2− 1) +

(
3− 9

4

)
+

1
2
(0)

)
· 1
2

= 1.25

c. For n = 2, the midpoint rule has a 12.5% error, which is a high estimate. The trapezoid rule
has a −25% error, which is a low estimate. For n = 4, the midpoint rule has a 3.125% error, which
is a high estimate. The trapezoid rule has a −6.25% error, which is a low estimate.

18. a. The trapezoid rule applied to the data gives an approximation of the integral:
∫ 10

0
A(t)dt ≈ 1

2(0) + 1.81 + 1.62 + 1.09 + 0.66 + 0.37 + 0.2 + 0.11 + 0.05 + 0.031
2(0.01) = 5.945

b. The midpoint rule gives the approximation:
∫ 10

0
4t e0.8tdt ≈ ∑9

i=0 4
(
i + 1

2

)
e−0.8(i+ 1

2)

= 4
(

1
2

)
e−0.8( 1

2) + 4
(

3
2

)
e−0.8( 3

2) + ... + 4
(

19
2

)
e−0.8( 19

2 )

= 1.3406 + 1.8072 + 1.3534 + 0.8513 + 0.4918 + 0.2701 + 0.1434306750 + 0.0744
+0.0379 + 0.0190 = 6.3891

The trapezoid rule gives the approximation:
∫ 10

0
4t e0.8tdt ≈ 1

2A(0) +
∑9

i=1 4ie−0.8i + 1
2A(10)

= 0 + 4 e−0.8 + 4(2) e−0.8(2) + ... + 2(10)e−0.8(10)

= 1.7973 + 1.6152 + 1.0886 + 0.6522 + 0.3663 + 0.1975 + 0.1035 + 0.0532
+0.0269 + 0.0067 = 5.9074

c. Since the exact value of the definite integral is 6.231, then for Part a the value is low and the
percent error is

Percent Error = 100
(5.945− 6.231)

6.231
= −4.59%.



For Part b midpoint rule, the value is high and the percent error is

Percent Error = 100
(5.945− 6.231)

6.231
= 2.54%.

For Part b trapezoid rule, the value is low and the percent error is

Percent Error = 100
(5.945− 6.231)

6.231
= −5.19%.


