
Fall 2012 Math 122 - Solutions Review Exam 2

1. a. f ′(x) = 3 cos(3x− 5)− 3 sin(3x)

cos(3x)
.

b. Rewrite the function as g(x) = 4
(
cos(x2 + 2)

)−1
− (x2 − sin3(x2))4, then the chain rule gives

g ′(x) = 8x
(
cos(x2 + 2)

)−2
sin(x2 + 2)− 4(x2 − sin3(x2))3(2x− 6x sin2(x2) cos(x2)).

c. Use the quotient rule and product rule

h ′(x) =
(x3 + cos(4x))(4x3 − 2e−2x)− (x4 + e−2x)(3x2 − 4 sin(4x))

(x3 + cos(4x))2
− e−x cos(2x)− 2e−x sin(2x).

d. With the product rule and chain rule,

k ′(x) = −3x2(x2 − 5)3 sin(x3) + 6x(x2 − 5)2 cos(x3)− 2 cos(2x)esin(2x).

2. a. The solution to
dy

dt
= −0.2y, y(0) = 8 is y(t) = 8e−0.2t by simple recognition.

b. The differential equation is given by
dx

dt
= 3−0.1x = −0.1(x−30). We make the substitution

z(t) = x(t) − 30 or z(0) = 4 − 30 = −26, since x(0) = 4. The modified differential equation is
z ′ = −0.1z, which has the solution z(t) = −26e−0.1t = x(t)−30. It follows that x(t) = 30−26e−0.1t.

c. The differential equation is given by
dw

dt
= 0.02w + 4 = 0.02(w + 200). We make the

substitution z(t) = w(t) + 200 or z(0) = 2 + 200 = 202, since w(0) = 2. The modified differential
equation is z ′ = 0.02z, which has the solution z(t) = 202e0.02t = w(t) + 200. It follows that
w(t) = 202e0.02t − 200.

d. The solution to
dh

dx
= −h

5
, h(0) = 50 is h(x) = 50e−x/5 by simple recognition.

e. This is a linear differential equation, so we first write
dy

dt
= 2 +

y

3
=

1

3
(y + 6). Thus, we make

the substitution z(t) = y(t) + 6, giving the differential equation
dz

dt
=

1

3
z with the initial condition

z(0) = y(0) + 6 = 8. Thus, z(t) = 8 et/3. It follows that y(t) = 8 et/3 − 6.

f. The general solution to
dz

dt
= 0.3z is z(t) = ce0.3t. The initial condition z(4) = 10 gives

z(4) = ce0.3(4) = 10, so c = 10e−0.3(4). It follows that z(t) = 10e0.3(t−4).

3. a. The derivative is given by

f ′(t) =
2 cos(2t) cos(2t) + 2 sin(2t) sin(2t)

cos2(2t)
=

2

cos2(2t)
,



since sin2(2t)+cos2(2t) = 1. It follows that f ′(0) = 2 cos2(0) = 2. Notice that since the denominator
is squared, it follows that the derivative is always positive for all t that the derivative is defined.

b. f(t) is zero when sin(2t) = 0. The sine function is zero when its argument is an integer
multiple of π. For t ∈ [0, 2π], f(t) = 0 at t = 0, π/2, π, 3π/2, 2π. The cosine function is zero when
its argument is π/2 + nπ for n an integer. Thus, the vertical asymptotes occur halfway between
zeroes of f , so at t = π/4, 3π/4, 5π/4, 7π/4.

c. The graph of f(t) for t ∈ [0, 2π] is below to the left.
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Problem 3 Problem 4

4. a. The damped spring-mass system, y(t) = 2e−2t sin(2t), has a velocity

v(t) = y ′(t) = 4e−2t cos(2t)− 4e−2t sin(2t)

= 4e−2t(cos(2t)− sin(2t))

b. The maximum occurs when cos(2t) = sin(2t) or t = π/8. Thus, the maximum is

y(π/8) = 2e−π/4 sin(π/4) ≃ 0.6448.

The mass returns to y(t) = 0 when sin(2t) = sin(π) or t = π/2. Above to the right is a graph of
the mass.

5. a. The basilar fiber vibrates through zero when the argument of sin(t/2) equals nπ for n an
integer. It follows that the zeroes occur when t = 0, 2π, 4π.

b. The velocity is given by

v(t) = z ′(t) =
15

2
e−t/2 cos(t/2)− 15

2
e−t/2 sin(t/2)

=
15

2
e−t/2 (cos(t/2)− sin(t/2))

c. The extrema occur when cos(t/2) = sin(t/2), so t/2 = π/4 + nπ for n an integer. There is a
maximum at t = π/2 with

z(π/2) = 15e−π/4 sin(π/4) ≃ 4.836.



This is followed by a minimum at t = 5π/2 with

z(5π/2) = 15e−5π/4 sin(5π/4) ≃ −0.2090.

The graph of z(t) for t ∈ [0, 4π] is shown below to the left.
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Problem 5 Problem 6

6. a. The period is 365 days, so 365ω = 2π or ω = 2π
365 ≃ 0.01721. The average length of time

is α = 1162+327
2 = 744.5 min. The amplitude is given by β = 1162 − 744.5 = 417.5 min. The

maximum occurs on day 170, so ω(170 − ϕ) = π/2 (based on the maximum of the sine function).
Thus, 170− ϕ = 365

4 = 91.25 or ϕ = 78.75 day. It follows that

L(t) = 744.5 + 417.5 sin(0.01721(t− 78.75)).

The length of day for Ground Hog’s day is L(32) = 744.5 + 417.5 sin(0.01721(32 − 78.75)) =
443.7 min in Anchorage.

b. The derivative of L ′(t) = 7.185 cos(0.01721(t− 78.75)). The maximum rate of change occurs
when cosine is 1, so L ′(78.75) = 7.185 min/day, which occurs on day 78.75 or about March 21, the
first day of spring. A graph is shown above to the right.

7. a. The differential equation for this culture is B ′(t) = rB(t), B(0) = 1000, which has the
solution

B(t) = 1000ert.

Since B(2) = 3000, we have 1000e2r = 3000, so e2r = 3 or r = ln(3)
2 ≃ 0.5493 hr−1. With

this value of r, we solve 1000ertd = 2000, so ertd = 2. Thus, the doubling time is given by
td = ln(2)

r = 2 ln(2)
ln(3) ≃ 1.262 hr.

b. The mutant population satisfies M(t) = e0.7t. Solving M(td) = 2 = e0.7td , we have the

doubling time td = ln(2)
0.7 =≃ 0.9902 hr. The populations B(t) and M(t) are equal when 1000ert =

e0.7t with r = 0.5493. So e(0.7−r)t = 1000 or

t =
ln(1000)

0.7− 0.5493
≃ 45.84 hr.



8. a. The solution of the Malthusian growth equation for Japan is J(t) = 116.8ert (in millions) from
the differential equation and the population in 1980. Since the population in 1990 is 123.5 (million),
we have J(10) = 123.5 = 116.8e10r. Thus,

e10r =
123.5

116.8
≃ 1.0574

10r = ln(1.0574) ≃ 0.055778

r = 0.005578

The doubling time is computed by solving J(t) = 233.6 = 116.8ert, so

ert = 2

rt = ln(2) ≃ 0.69315

t =
ln(2)

r
≃ 124.3 yr

b. The differential equation for Bangladesh is given by

dB

dt
= kB, B(0) = 88.1.

A similar calculation is used for Bangladesh, so B(t) = 88.1ekt with B(10) = 110.1 = 88.1ekt.
Solving for the growth constant k as above, we find

k =
1

10
ln

(
110.1

88.1

)
≃ 0.02229.

The population in 2000 is found by evaluating

B(20) = 88.1e20k ≃ 137.6 million.

c. The populations of Japan and Bangladesh are equal when B(t) = J(t), so

88.1ekt = 116.8ert

ekt

ert
=

116.8

88.1
≃ 1.3258

e(k−r)t = e0.016714t = 1.3258

0.016714t = ln(1.3258) ≃ 0.28199

t =
0.28199

0.016714
≃ 16.87 years

It follows that these models predict that the population of Bangladesh exceeded the population of
Japan in 1997.

9. a. The solution to the differential equation is

P (t) = 38.58ert.

Since P (20) = 68.34, 68.34 = 38.58e20r or

r =
1

20
ln

(
68.34

38.58

)
≈ 0.02859.



The doubling time satisfies 2× 38.58 = 38.58ertd , so td = ln(2)
r = 24.246.

b. We write the differential equation in the form

dY

dt
= 0.03

(
Y − 7

3

)
.

With the substitution, z(t) = Y (t)− 7
3 , so z(0) = 38.58− 7

3 = 36.25, the easier problem is

dz

dt
= 0.03z, z(0) = 36.25.

Thus, z(t) = 36.25e0.03t = Y (t)− 2.333 or

Y (t) = 2.333 + 36.25e0.03t.

Doubling time solves 77.16 = 2.33 + 36.25e0.03td or

td =
ln

(
74.83
36.25

)
0.03

≈ 24.16.

c. For 2000, the Malthusian growth model predicts P (40) = 38.58e0.02859(40) = 121.056 and
the Immigration model predicts Y (40) = 2.333 + 36.25e0.03(40) = 122.684. With the population
actually being 99.93 million, the percent error from the Malthusian growth model is 21.14%, while
the immigration model has an error of 22.77%.

10. a. The solution to the radioactive decay problem is

R(t) = 30e−kt.

With the half-life of 8 years, R(8) = 15 = 30e−8k or e8k = 2. Thus,

8k = ln(2) or k =
ln(2)

8
≃ 0.08664.

After 3 days,
R(3) = 30e−3k ≃ 23.13 mCi.

b. The length of time for the original 30 mCi of 131I to decay to 5 mCi of 131I satisfies R(t) =
5 = 30e−kt or ekt = 6. It follows that kt = ln(6) or

t =
ln(6)

k
≃ ln(6)

0.08664
≃ 20.68 days.

11. a. The solution with the population in millions is given by

P (t) = 50.2ert,

where t is in years after 1880. From the population in 1890, we have 62.9 = 50.2e10r or e10r = 1.2530.
Thus, r = 0.02255. To find the time until the population doubles, we compute 100.4 = 50.2ert or



t = ln(2)/r ≃ 30.7. This suggests that the population of the U.S. doubles from 1880 around 1911,
assuming that the rate of growth stays constant.

b. The model predicts that the population in 1900 is

P (20) = 50.2e20r ≃ 78.8.

The error between the model and the actual population is

100
(P (20)− 76.0)

76.0
= 100

(78.8− 76.0)

76.0
= 3.7%.

12. a. The solution to the white lead problem is P (t) = 10e−kt, where t = 0 represents 1970. From
the data at 1975, we have 8.5 = 10e−5k or e5k = 10/8.5 = 1.17647. Thus, k = 0.032504 yr−1. To
find the half-life, we compute 5 = 10e−kt, so t = ln(2)/k = 21.33 yr is the half-life of lead-210.

b. The differential equation can be written P ′ = −k(P − r/k), so we make the substitution
z(t) = P (t)− r/k. This leaves the initial value problem

z ′ = −kz, z(0) = P (0)− r/k = 10− r/k,

which has the solution z(t) = (P (0)− r/k)e−kt = P (t)− r/k. Thus, the solution is

P (t) =

(
10− r

k

)
e−kt +

r

k
= 2.3086e−kt + 7.6914,

where k = 0.032504. In the limit,

lim
t→∞

P (t) = 7.6914 disintegrations per minute of 210Pb.

13. a. The differential equation describing the temperature of the tea satisfies

H ′ = −k(H − 21), H(0) = 85 and H(5) = 81.

Make the substitution z(t) = H(t)− 21, which gives the differential equation

z ′ = −kz, z(0) = H(0)− 21 = 64.

The solution becomes z(t) = 64e−kt = H(t)− 21 or

H(t) = 64e−kt + 21.

To find k, we solve H(5) = 81 = 64e−5k + 21 or e5k = 64/60 = 1.0667. Thus, k = 0.012908 min−1.
The water was at boiling point when 64e−kt + 21 = 100 or e−kt = 79/64. It follows that t =
− ln(79/64)/k = −16.3 min. This means that the talk went 16.3 min over its scheduled ending.

b. To obtain a temperature of at least 93◦C, then we need to find the time that satisfies H(t) =
93 = 64e−kt + 21, so e−kt = 72/64 = 1.125. Solving for t gives t = − ln(72/64)/k = −9.125 min. It
follows that you must arrive at the hot water within 16.3− 9.1 = 7.2 min of the scheduled end of
the talks.



14. a. Substituting the parameters into the differential equation gives

c ′ =
1

106
(22000− 2000c) = −0.002(c− 11).

We make the substitution z(t) = c(t)−11, which gives the initial value problem z ′ = −0.002z with
z(0) = c(0)− 11 = −11. The solution of this differential equation is z(t) = −11e−0.002t = c(t)− 11,
so

c(t) = 11− 11e−0.002t.

b. Solve the equation c(t) = 11 − 11e−0.002t = 5, so e0.002t = 11/6 or t = 500 ln(11/6) =
303.1 days. The limiting concentration

lim
t→∞

c(t) = 11.

The graph is below.
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15. a. Substituting the parameters into the differential equation gives

dc(t)

dt
=

200

10000
(10− c) = −0.02(c− 10).

We make the substitution z(t) = c(t)− 10, which gives the initial value problem z ′ = −0.02z with
z(0) = c(0)− 10 = −10. The solution of this differential equation is z(t) = −10e−0.02t = c(t)− 10,
so

c(t) = 10− 10e−0.02t.

We solve the equation c(t) = 10− 10e−0.02t = 2, so e0.02t = 10/8 or t = 50 ln(10/8) = 11.2 days.

b. The Euler’s formula with the linearly increasing pollutant level is given by

cn+1 = cn + h(0.02(10 + 0.1tn − cn)) = cn + 0.2 + 0.002tn − 0.02cn,

with h = 1. Iterating this, we create a table



t0 = 0 c0 = 0

t1 = 1 c1 = c0 + 0.2 + 0.002t0 − 0.02c0 = 0.2

t2 = 2 c2 = c1 + 0.2 + 0.002t1 − 0.02c1 = 0.398

The approximate solution is c2 = 0.398 ppb.

16. a. For the differential equation
dy

dt
= t(2− y), the Euler formula is given by

yn+1 = yn + h (tn(2− yn)) = yn + 0.25 (tn(2− yn)) .

For this problem, y0 = 4, we can use the Euler’s formula to create the following table:

t0 = 0 y0 = 4

t1 = 0.25 y1 = y0 + 0.25 (t0(2− y0)) = 4 + 0.25(0)(2− 4) = 4

t2 = 0.5 y2 = y1 + 0.25 (t1(2− y1)) = 4 + 0.25(0.25)(2− 4) = 3.875

t3 = 0.75 y3 = y2 + 0.25 (t2(2− y2)) = 3.875 + 0.25(0.5)(2− 3.875) = 3.6406

t4 = 1.0 y4 = y3 + 0.25 (t3(2− y3)) = 3.6406 + 0.25(0.75)(2− 3.6406) = 3.3330

Thus, the approximate the solution at t = 1 is y4 ≃ y(1) = 3.3330.

b. First, we note that all of the choices satisfy the initial condition. If we differentiate the
solutions from the choices given we have:

(i) y ′(t) = −2e−t

(ii) y ′(t) = 2t

(iii) y ′(t) = −2te−
t2

2

The right hand side of the differential equation is t(2− y), so we have

(i) t(2− y) = t(2e−t)

(ii) t(2− y) = t(t2 + 2)

(iii) t(2− y) = t(−2e−
t2

2 )

Only the last choice satisfies the differential equation. We evaluate y(1) = 2 + 2 e−1/2 = 3.21306,
which gives an error of

100
y4 − y(1)

y(1)
= 100

3.3330− 3.21306

3.21306
= 3.73%.

17. a. For the differential equation, dy
dt = y + 2 with y(0) = 3 and h = 0.25, the Euler’s formula is

yn+1 = yn + h(yn + 2) = yn + 0.25(yn + 2).

Iterating this, we create a table

t0 = 0 y0 = 3

t1 = 0.25 y1 = y0 + 0.25(y0 + 2) = 3 + 0.25(3 + 2) = 4.25

t2 = 0.5 y2 = 4.25 + 0.25(4.25 + 2) = 5.8125

t3 = 0.75 y3 = 4.25 + 0.25(4.25 + 2) = 7.7656

t4 = 1.0 y4 = 7.7656 + 0.25(7.7656 + 2) = 10.2070



Thus, the approximate the solution at t = 1 is y4 ≃ y(1) = 10.2070.

b. The differential equation is a linear differential equation, so we make a substitution, z(t) =
y(t) + 2. The solution to the initial value problem is

z′ = z, z(0) = y(0) + 2 = 5.

This has the solution z(t) = 5et = y(t)+2, so y(t) = 5et−2. It follows that y(1) = 5e−2 ≃ 11.5914.
The error between the actual and Euler’s solution is

100
(y4 − y(1))

y(1)
= 100

(10.2070− 11.5914)

11.5914
= −11.94%,

which implies that Euler’s method falls significantly short of the actual solution.

18. a. The solution to this differential equation is R(t) = 10e−0.05t. The half-life satisfies 5 =
10e−0.05t, so e0.05t = 2 or t = 20 ln(2) ≃ 13.86.

b. For the differential equation, dR
dt = −0.05R+0.2e−0.01t with R(0) = 10 and h = 1, the Euler’s

formula is
Rn+1 = Rn + h(−0.05Rn + 0.2e−0.01tn) = Rn − 0.05Rn + 0.2e−0.01tn .

Iterating this, we create a table

t0 = 0 R0 = 10

t1 = 1 R1 = R0 − 0.05R0 + 0.2e−0.01t0 = 10− 0.5 + 0.2 = 9.7

t2 = 2 R2 = R1 − 0.05R1 + 0.2e−0.01t1 = 9.7− 0.485 + 0.198 = 9.413

t3 = 3 R3 = R2 − 0.05R2 + 0.2e−0.01t2 = 9.413− 0.471 + 0.096 = 9.138

Thus, the approximate the solution at t = 3 is R3 ≃ R(3) = 9.138.

c. Consider R(t) = 5e−0.05t+5e−0.01t, then R′(t) = −0.25e−0.05t− 0.05e−0.01t. But −0.05R(t)+
0.2e−0.01t = −0.05(5e−0.05t+5e−0.01t)+0.2e−0.01t = −0.25e−0.05t−0.05e−0.01t, so the second choice
(ii) is the solution to the radioactive decay problem with another input. The correct solution at
t = 3 is R(3) = 9.15576. The percent error between the correct solution and the Euler solution

100
(R3 −R(3))

R(3)
= 100

(9.138− 9.15576)

9.15576
= −0.19%.

19. a. The differential equation with the information in the problem is given by:

dH

dt
= −k(H − 25), H(0) = 35,

where t = 0 is 7 AM. We make the change of variables z(t) = H(t)−25, so z(0) = 10. The problem
now becomes

dz

dt
= −kz, z(0) = 10,

which has the solution
z(t) = 10 e−kt or H(t) = 25 + 10 e−kt.



From the information at 9 AM, we see

H(2) = 33.5 = 25 + 10 e−2k or e2k =
10

8.5
or k =

ln
(

10
8.5

)
2

= 0.081259.

It follows that
H(t) = 25 + 10 e−0.081259t.

The time of death is found by solving

H(td) = 39 = 25 + 10 e−0.081259td or e−0.081259td =
14

10
or td = − ln(1.4)

0.081259
= −4.1407.

It follows that the time of death is 4 hours and 8.4 min before the body is found, which gives the
time of death around 2:52 AM.

20. a. Let A(t) be the amount of drug in the body, then the concentration of the drug is given by
c(t) = A(t)/10. We first write the differential equation for the change in amount of drug in the
body

dA

dt
= amt entering − amt leaving = 1(0.2)− 1 · c.

The differential equation for the concentration of drug satisfies

dc

dt
= 0.02− 0.1c = −0.1(c− 0.2), c(0) = 0.

Let z(t) = c(t)− 0.2, then we transform the linear differential equation above into

dz

dt
= −0.1z, z(0) = −0.2.

which has the solution

z(t) = −0.2 e−0.1t or c(t) = 0.2− 0.2 e−0.1t.

b. The tumor responds when c(t) = 0.1, solving c(t) = 0.1 = 0.2 − 0.2 e−0.1t or e0.1t = 2. It
easily follows that the time for a response to begin is t = 10 ln(2) = 6.9315 days.

c. If the body metabolizes 0.05 µg/day, then the new equation for the amount of drug in the
body is

dA

dt
= 1(0.2)− 0.05− 1 · c = 0.15− c.

The differential equation for the concentration of drug satisfies

dc

dt
= 0.015− 0.1c = −0.1(c− 0.15), c(0) = 0.

The limiting concentration is reached when dc
dt = 0. Substituting this in the differential equation

above, we see
0 = −0.1(c− 0.15) or c = 0.15.

It follows that
lim
t→∞

c(t) = 0.15 µg/l.


