Math 122 Solutions - Fall 2012 Review Exam 1

1. The function, y = 5sin(3x) — 4, has a period of x = 27/3. The function oscillates about y = —4,
the vertical shift, with an amplitude of 5. It begins at (0,—4), goes to a maximum at (7/6,1),
continues through (7/3, —4), then reaches a minimum at (7/2, —9), and ends its cycle at (27/3, —4).
The maxima occur at z = 7/6,57/6,37/2. The graph of the function is below.
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Problem 1 Problem 2

2. a. The function, y = 2 — 4 cos(2z), has a period of x = 7. The function oscillates about y = 2
with an amplitude of 4. It begins at a minimum at (0, —2), goes to a maximum at (7/2,6), then
ends its cycle at (7w, —2). The maxima occur at x = 7/2, 37 /2 with y values of 6. The graph of the
function is above.

b. The equivalent form has A = 2, B =4, and w = 2. Since the amplitude has a negative sign,
we phase shift the function by half a period or ¢ = 5. Thus,

y(x) =244cos (2(z— %)) .

c. The notes show that the equivalent sine model is shifted a quarter period from the cosine
model in Part b. Thus, C = A, D= B, v=w,and ¢ = ¢ — 7§ or

y(x) =2+4sin(2(x - %)) .

3. a. The function, y(t) = 7 — 4cos (§(t —5)), has a period of T' = 16. The function oscillates
about y = 7 (vertical shift) with an amplitude of 4. The phase shift is ¢ = 5. There is an absolute
maximum at (tmaez, Y(tmaz)) = (13,11). There is an absolute minimum at (tmin, Y(tmin)) = (5, 3).
The graph of the function is below.

b. The equivalent form has A =7, B =4, and w = g. Since the amplitude has a negative sign,
we phase shift the function by half a period. It follows that ¢ =54 8 = 13. Thus,

y(t) =7+ 4cos (§(t —13)).
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c. The notes show that the equivalent sine model is shifted a quarter period from the cosine
model in Part b. Thus, C=A, D=B,v=w,and ¥ =¢ —4 or

y(t) =7+ 4sin (§(t—9)).

4. a. For the Logistic growth model, P, 11 = F(P,) = 2.8P, — 0.0005P? with Py = 1000, then

P, = 2.8(1000) — 0.0005(1000)2 = 2800 — 500 = 2300
P, = 2.8(2300) — 0.0005(2300)2 = 3795

b. At equilibrium, P, = P, = P,41, so P, = 2.8P, — 0.0005P2 or P.(1.8 — 0.0005F,) = 0. One
solution is P, = 0, and the other equilibrium satisfies 1.8 — 0.0005FP, = 0 or P, = 0.(1)6805 = 3600.
The derivative of the updating function is F/(P) = 2.8 — 0.001P. At P, =0, F'(0) =2.8 > 1, so
this equilibrium is unstable with solutions monotonically growing away from P, = 0. At P, = 3600,
F’(3600) = 2.8 — 3.6 = —0.8 > —1, so the higher equilibrium is stable with solutions oscillating,
but approaching P, = 3600.

c. We see that F(P) = P(2.8 —0.0005P), so the updating function has P-intercepts at P = 0
and P = 5600. The vertex has P, = 2800, so F'(2800) = 3920, which gives the vertex (2800, 3920).
The updating function intersects the identity function at the equilibria, (0,0) and (3600, 3600).
The graph is shown below.
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5. a. For the population model with the Allee effect, N,,11 = N, + 0.1N, (1 — é(Nn — 5)2) with
(population in thousands) Ny = 4, the next two generations are

Ni = 4+0.1(4) (1—;(4—5)2):4.356

1
N, 4.356 + 0.1(4.356) <1 — 54356 - 5)2> = 4.771

in thousands of birds.

b. N, = N, + 0.1N, (1 — LN, —5)2), so 0.1N, (1 — LN, —5)2) — 0. Thus, N, = 0 or
(Ne —5)? = 9. Tt follows that the equilibria are N, = 0, 2, and 8.

c. From the expanded model, Ny, 41 = A(N,,) = 3IN,, + § N2 — &5 N2, the derivative is A'(N) =

n
i—g + %N — 3—10]\7 2. At N, =0, A'(0) = 37, so this equilibrium is a stable equilibrium with solutions

=3,
monotonically approaching 0. At N, =2, A'(2) = %, so this equilibrium is an unstable equilibrium
with solutions monotonically moving away from 2. At N, =8, A'(8) = %, so this equilibrium is a

stable equilibrium with solutions monotonically approaching 8.

d. Biologically, these results imply that if the population is below 2 thousand, then it will go to
extinction (N, = 0). If the population is above 2 thousand, then the population of birds will grow
to a carrying capacity of N, = 8 thousand.

6. The volume of the open box satisfies the Objective function
V(z,y) = 2%y.
The Constraint condition on the surface area of this box is given by

SA = z? + 4zy = 600.

This constraint condition yields y = %, which when substituted into the objective function

produces a function of one variable:

2
— 1
V(z) = * <6004:Cx> = 1(600.1: — %),



Differentiating this quantity, we obtain

awv 1 9
which when set equal to zero gives 2 = 10y/2. (Take only the positive root.) This value of z gives
the optimal length of one side of the base, which when substituted into the formula above gives

y = 5v/2. It follows that the maximum volume for this box is V' (x) = 1000v/2.

7. Combining the number of drops with the energy function, we have

10

E(h):hN(h):h(lJr}l_l):h(

h—1+10>_h2+9h
h—1 )  h=1"

This is differentiated to give

;o (R=1)2h+9) — (h*+9h) h®*—2h—9
E'(h) = (h—1)2 - (h—1)2

A minimum occurs when h? — 2h —9 =0, so
h=1++v10=-2.1623,4.1623.

It follows that the minimum energy occurs when A = 1 4+ /10 = 4.1623 m, which give the height
that a crow should fly to minimize the energy needed to break open a walnut.

8. The area of the brochure is A = zy = 125, where x is the width of the page and y is the length
of the page. The area of the printed page, which is to be maximized is given by

P=(x—4)(y—5).
From the constraint on the page area, we have y = 125/x, which when substituted above gives

125 500
P(z) = (z —4) ( 5) =125 — —— — 5z + 20 = 145 — 5002~! — 5z
€T x

The maximum is found by differentiation, which gives

5(100 — z2)

P'(z) =500272 — 5 = —.

x
This is zero when x = 10. It follows that y = 12.5. So the brochure has the dimensions 10x12.5
with the printed region having dimensions 6x7.5 or 45 in2.

9. a. If Py =100, then P; = 600e~"! = 542.9 and P, = 6(542.9)e~"-%429 = 1892.75.

b. The derivative is R'(P) = 6e=%%1(1 — 0.001P). The critical P. occurs at P. = 1000, so
there is a maximum at (1000,6000e~!) = (1000,2207). The graph passes through the origin, so
(0,0) is the only intercept. Since limp_,o, R(P) = 0, the is a horizontal asymptote at R = 0. The
second derivative is R”(P) = —0.006e~%17(2 — 0.001P), which is zero at P = 2000. Thus, there
is a point of inflection at (2000, 12000e~2) = (2000, 1624). The graph is below.



A00

2000 ]

] 00
1500

10001 e

500 200

0 000 2000 p 3000 4000 5000 07777200 400 p BOO 8OO 1000
Problem 9 Problem 10

c¢. The equilibria satisfy P, = 6Pee*0'001pe, so either P, = 0 or 1 = 6e 0001 The latter gives
P. =10001n(6) ~ 1792. For P. = 0, R’(0) = 6 > 1, so this equilibrium is unstable with solutions
moving monotonically away. For P, = 1792, R’/(1792) = —0.7918, so this equilibrium is stable with
solutions oscillating and moving toward the equilibrium.

10. a. If Py = 500, then P; = 8000/3.5% = 653.06 and P, = 574.346.

T 16(1 + 0.005P)% — 32P(1 + 0.005P)(0.005)  16(1 — 0.005P)
b. The d t H'(P) = = .

¢ derivative is H'(P) (1+ 0.005P)4 (1+ 0.005P)
The critical P. occurs at P, = 200, so there is a maximum at (200, 800). The graph passes through
the origin, so (0,0) is the only intercept. Since limp_,o, H(P) = 0, the is a horizontal asymptote

at H = 0. The second derivative is
H"(P) = —0.08(1 + 0.005P) — 0.24(1 — 0.005P)(1 + 0.005P)?  —0.16(2 — 0.005P)

(14 0.005P)% ~ (1+0.005P)%
which is zero at P = 400. Thus, there is a point of inflection at (400,6400/9) = (400,711). The

graph is above.

c. The equilibria satisfy P, = 16P./(1 + 0.005P,)2, so either P, = 0 or (1 + 0.005P.)% = 16.
The latter gives P, = 600 (neglecting the negative solution). For P, =0, H'(0) = 16 > 1, so this
equilibrium is unstable with solutions moving monotonically away. For P. = 600, H'(600) = —0.5,
so this equilibrium is stable with solutions oscillating and moving toward the equilibrium.

11. a. The time as a function of x is given by

_ 80—z (z% + 1600)'/2
- 15 9 '
b. We differentiate T'(z) to find the minimum time,

1 1
T'(2) = —— + =
() 15+9<

T(x)

1, p ) 1 z
S« +1600) /222 ) = — — .
5 (7 +1600) 772w 15 " 9(a2 + 1600)1/2

Setting this derivative equal to zero gives

i
9(z2 +1600)1/2 15




5¢ = 3(z? +1600)'/2
252% = 9(z* 4 1600)
1622 = 14400

z2 = 900

This implies = 30 m produces the minimum time. 7(30) = 22 + 30 = %2 — §.89 sec. We check

the endpoints T'(0) = % = 7.778 sec and T'(50) = 109@ = 7.11 sec, confirming the optimal escape

strategy is for the rabbit to run 20 m along the road, then run straight toward the burrow.

12. a. At rest, V(t) = =70 = 50t(t — 2)(t — 3) — 70, so 50t(t — 2)(t — 3) = 0. Thus, the membrane
is at rest when ¢t =0, 2, and 3.

b. To find the extrema, we first write V(t) = 50(t> — 5t + 6t) — 70, then the derivative is
V'(t) = 50(3t> — 10t + 6). By the quadratic formula, t = 5 + g = 0.7847,2.5486. Substituting
these values into the membrane equation gives the peak of the action potential at t = 0.7847 with a
membrane potential of V(0.7847) = 35.63 mV, while the minimum potential (most hyperpolarized
state) occurs at t = 2.5486 with a membrane potential of V' (2.5486) = —101.56 mV. Below is a
graph for this model of membrane potential.
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13. The objective function is given by:
S(x,y) = 22 + Txy.

The constraint condition is given by:

V =22y = 50,000 cm®, so, y= 50;;2)00.
Thus,
S(x) =222 + 350,000 OOO.
x
Differentiating we have,
S'(x) = 4z — 350,000‘

22



Solving S'(z) = 0, so % = 2800 — g7 500 or x = 44.395. It follows y = 25.37. Thus, the
minimum amount of material needed is S(44.395) = 11, 825.6 cm?.

14. a. L(0) = 0.24 m (24 cm) is the birth size a leopard shark (L-intercept). For large t, L(t) —
1.6 m. The graph of this von Bertalanffy equation is shown below. Sexual maturity is found by
solving L(t) = 0.5 = 1.6(1 — 0.85e—0.08t) or 1.36e %% = 1.1 or %8 = 1.236. It follows that
sexual maturity occurs at t = 2.652 yr.

b. The composite function is given by
W (t) = 4.5(1.6(1 — 0.85¢~05))3 = 18.432(1 — 0.85¢~"-0%)3,

The intercept is W (0) = 0.0622 kg, while for large ¢, W (t) — 18.432 kg. The graph of this function
is shown below.

c. By the chain rule, the derivative of W (t) is
W/ (t) = 3(18.432)(1 — 0.85¢ %982 (—0.85)(—0.08)e 98 = 3.76¢ 7908 (1 — 0.85¢70-98")2,
By the product rule and chain rule, the second derivative is

W(t) = 3.76 (2e70%(1 - 0.85¢~"0%)(~0.85)(~0.08)e U5 — 0.08¢ U (1 — 0.85¢~00%)?)
W”(t) = 3.76e %% (1 — 0.85¢70981)(0.204¢ 709 — 0.08)

W"(t) = 0 when either 1 — 0.85¢7%%8 = 0 or 0.204¢7%% — 0.08 = 0. The first is zero when
t = —2.03 yr, while the second is zero when t = 11.7 yr. It follows that the maximum weight gain
occurs at age t = 11.7 yr with a weight gain of W/'(11.7) = 0.655 kg/yr.
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15. a. The periodic contractions of 10/min implies that the period is 0.1 min. Thus, 0.1w = 27 or
w = 207. The average value A = % = 2.5, while the amplitude is given by B = 4 — 2.5 = 1.5.
Thus, the radius of the small intestine is given by

R(t) = 2.5 + 1.5 cos(207t).
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b. The graph of R(t) for t € [0,0.2] is shown below. The maxima occur at ¢ = 0,0.1,0.2 min,
and the minima are halfway between the maxima with ¢ = 0.05,0.15 min.

¢. The equivalent sine form of the model is phase shifted by a quarter period or ﬁ min, so
. However, this is negative, so the principle phase shift requires adding one period or
= 4—30. The equivalent sine model is written:

+ &=

R(t) = 2.5 + 1.5sin (207 (t = 3)).

16. a. The period is 365 days, so 365w = 27 or w = % ~ (0.01721. The average length of time
is o = 1628327 — 7445 min. The amplitude is given by 8 = 1162 — 744.5 = 417.5 min. The
maximum occurs on day 170, so w(170 — ¢) = 7/2 (based on the maximum of the sine function).

Thus, 170 — ¢ = 32 = 91.25 or ¢ = 78.75 day. It follows that

L(t) = 744.5 + 4175 sin(0.01721(¢ — 78.75)).

The length of day for Ground Hog’s day is L(32) = 744.5 4+ 417.5sin(0.01721(32 — 78.75)) =
443.7 min in Anchorage.

b. The equivalent cosine form of the model is phase shifted by a quarter period or 91.25 days,
so ¢ = 78.75+91.25 = 170. Also, one can use that the maximum of the cosine model occurs at the
phase shift. Thus, the equivalent cosine model is written:

L(t) = 744.5 + 417.5 cos(0.01721(t — 170)).

17. a. From P3, we have P3 = 68.34 = 28.49(1+7)3, so (147) = (68.34/28.49)'/3 = 1.33863. Thus,
r = 0.33863. Doubling time satisfies 2Py = Py(1 + 7)™ or n = In(2)/In(1 4+ r) = 2.377 decades or
23.77 years.

b. The model predicts the population in 2000 is P5 = 28.49(1.33863)° = 122.46 million. The
percent error is 100% = 22.55%.

c. From the logistic model, we obtain P; = 39.32 million and P, = 52.79 million.
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d. To find equilibria, we solve P, = 1.48P,—0.0035P2, which gives P. = 0 or P, = 137.14 million.
The derivative of the updating function is F''(P) = 1.48 — 0.007P, so F'/(137.14) = 0.52. It follows
that this equilibrium is stable with solutions monotonically approaching this carrying capacity
equilibrium.

18. a. From the high and low temperatures, A is the average, so A = 18°C. The amplitude B is the
difference between the maximum and the average, so B = 8°C. The period is 24 hr, so 24w = 27
or w= 15 ~ 0.2618. The maximum temperature occurs at 4 PM (¢ = 16), so

T(16) = 26 = 18 + 8sin (17;(16 - ¢)> .

It follows that
(T m T
sin <12(16 _ ¢>)> =1 o T(16-6)=1.
Hence, ¢ = 10. The sine model becomes

R(t) = 18 + 8sin(0.2618(¢ — 10)).
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b. The equivalent cosine form of the model is phase shifted by a quarter period or 6 hr, so
¢ = 10+ 6 = 16. Again the phase shift for the cosine model is easy as it corresponds to the
maximum. So, we obtain the equivalent cosine model:

R(t) = 18 + 8 cos(0.2618(t — 16)).



