1. The function, $y=5 \sin (3 x)-4$, has a period of $x=2 \pi / 3$. The function oscillates about $y=-4$, the vertical shift, with an amplitude of 5 . It begins at $(0,-4)$, goes to a maximum at $(\pi / 6,1)$, continues through $(\pi / 3,-4)$, then reaches a minimum at $(\pi / 2,-9)$, and ends its cycle at $(2 \pi / 3,-4)$. The maxima occur at $x=\pi / 6,5 \pi / 6,3 \pi / 2$. The graph of the function is below.

Problem 1

Problem 2
2. a. The function, $y=2-4 \cos (2 x)$, has a period of $x=\pi$. The function oscillates about $y=2$ with an amplitude of 4 . It begins at a minimum at $(0,-2)$, goes to a maximum at $(\pi / 2,6)$, then ends its cycle at $(\pi,-2)$. The maxima occur at $x=\pi / 2,3 \pi / 2$ with y values of 6 . The graph of the function is above.
b. The equivalent form has $A=2, B=4$, and $\omega=2$. Since the amplitude has a negative sign, we phase shift the function by half a period or $\phi=\frac{\pi}{2}$. Thus,

$$
y(x)=2+4 \cos \left(2\left(x-\frac{\pi}{2}\right)\right) .
$$

c. The notes show that the equivalent sine model is shifted a quarter period from the cosine model in Part b. Thus, $C=A, D=B, \nu=\omega$, and $\psi=\phi-\frac{\pi}{4}$ or

$$
y(x)=2+4 \sin \left(2\left(x-\frac{\pi}{4}\right)\right) .
$$

3. a. The function, $y(t)=7-4 \cos \left(\frac{\pi}{8}(t-5)\right)$, has a period of $T=16$. The function oscillates about $y=7$ (vertical shift) with an amplitude of 4 . The phase shift is $\phi=5$. There is an absolute maximum at $\left(t_{\text {max }}, y\left(t_{\max }\right)\right)=(13,11)$. There is an absolute minimum at $\left(t_{\min }, y\left(t_{\min }\right)\right)=(5,3)$. The graph of the function is below.
b. The equivalent form has $A=7, B=4$, and $\omega=\frac{\pi}{8}$. Since the amplitude has a negative sign, we phase shift the function by half a period. It follows that $\phi=5+8=13$. Thus,

$$
y(t)=7+4 \cos \left(\frac{\pi}{8}(t-13)\right) .
$$

Problem 3
c. The notes show that the equivalent sine model is shifted a quarter period from the cosine model in Part b. Thus, $C=A, D=B, \nu=\omega$, and $\psi=\phi-4$ or

$$
y(t)=7+4 \sin \left(\frac{\pi}{8}(t-9)\right) .
$$

4. a. For the Logistic growth model, $P_{n+1}=F\left(P_{n}\right)=2.8 P_{n}-0.0005 P_{n}^{2}$ with $P_{0}=1000$, then

$$
\begin{aligned}
& P_{1}=2.8(1000)-0.0005(1000)^{2}=2800-500=2300 \\
& P_{2}=2.8(2300)-0.0005(2300)^{2}=3795
\end{aligned}
$$

b. At equilibrium, $P_{e}=P_{n}=P_{n+1}$, so $P_{e}=2.8 P_{e}-0.0005 P_{e}^{2}$ or $P_{e}\left(1.8-0.0005 P_{e}\right)=0$. One solution is $P_{e}=0$, and the other equilibrium satisfies $1.8-0.0005 P_{e}=0$ or $P_{e}=\frac{1.8}{0.0005}=3600$. The derivative of the updating function is $F^{\prime}(P)=2.8-0.001 P$. At $P_{e}=0, F^{\prime}(0)=2.8>1$, so this equilibrium is unstable with solutions monotonically growing away from $P_{e}=0$. At $P_{e}=3600$, $F^{\prime}(3600)=2.8-3.6=-0.8>-1$, so the higher equilibrium is stable with solutions oscillating, but approaching $P_{e}=3600$.
c. We see that $F(P)=P(2.8-0.0005 P)$, so the updating function has P-intercepts at $P=0$ and $P=5600$. The vertex has $P_{v}=2800$, so $F(2800)=3920$, which gives the vertex $(2800,3920)$. The updating function intersects the identity function at the equilibria, $(0,0)$ and $(3600,3600)$. The graph is shown below.

5. a. For the population model with the Allee effect, $N_{n+1}=N_{n}+0.1 N_{n}\left(1-\frac{1}{9}\left(N_{n}-5\right)^{2}\right)$ with (population in thousands) $N_{0}=4$, the next two generations are

$$
\begin{aligned}
& N_{1}=4+0.1(4)\left(1-\frac{1}{9}(4-5)^{2}\right)=4.356 \\
& N_{2}=4.356+0.1(4.356)\left(1-\frac{1}{9}(4.356-5)^{2}\right)=4.771
\end{aligned}
$$

in thousands of birds.
b. $N_{e}=N_{e}+0.1 N_{e}\left(1-\frac{1}{9}\left(N_{e}-5\right)^{2}\right)$, so $0.1 N_{e}\left(1-\frac{1}{9}\left(N_{e}-5\right)^{2}\right)=0$. Thus, $N_{e}=0$ or $\left(N_{e}-5\right)^{2}=9$. It follows that the equilibria are $N_{e}=0,2$, and 8 .
c. From the expanded model, $N_{n+1}=A\left(N_{n}\right)=\frac{37}{45} N_{n}+\frac{1}{9} N_{n}^{2}-\frac{1}{90} N_{n}^{3}$, the derivative is $A^{\prime}(N)=$ $\frac{37}{45}+\frac{2}{9} N-\frac{1}{30} N^{2}$. At $N_{e}=0, A^{\prime}(0)=\frac{37}{45}$, so this equilibrium is a stable equilibrium with solutions monotonically approaching 0 . At $N_{e}=2, A^{\prime}(2)=\frac{17}{15}$, so this equilibrium is an unstable equilibrium with solutions monotonically moving away from 2. At $N_{e}=8, A^{\prime}(8)=\frac{7}{15}$, so this equilibrium is a stable equilibrium with solutions monotonically approaching 8 .
d. Biologically, these results imply that if the population is below 2 thousand, then it will go to extinction $\left(N_{e}=0\right)$. If the population is above 2 thousand, then the population of birds will grow to a carrying capacity of $N_{e}=8$ thousand.
6. The volume of the open box satisfies the Objective function

$$
V(x, y)=x^{2} y .
$$

The Constraint condition on the surface area of this box is given by

$$
S A=x^{2}+4 x y=600 .
$$

This constraint condition yields $y=\frac{600-x^{2}}{4 x}$, which when substituted into the objective function produces a function of one variable:

$$
V(x)=x^{2}\left(\frac{600-x^{2}}{4 x}\right)=\frac{1}{4}\left(600 x-x^{3}\right) .
$$

Differentiating this quantity, we obtain

$$
\frac{d V}{d x}=\frac{1}{4}\left(600-3 x^{2}\right)
$$

which when set equal to zero gives $x=10 \sqrt{2}$. (Take only the positive root.) This value of x gives the optimal length of one side of the base, which when substituted into the formula above gives $y=5 \sqrt{2}$. It follows that the maximum volume for this box is $V(x)=1000 \sqrt{2}$.
7. Combining the number of drops with the energy function, we have

$$
E(h)=h N(h)=h\left(1+\frac{10}{h-1}\right)=h\left(\frac{h-1+10}{h-1}\right)=\frac{h^{2}+9 h}{h-1}
$$

This is differentiated to give

$$
E^{\prime}(h)=\frac{(h-1)(2 h+9)-\left(h^{2}+9 h\right)}{(h-1)^{2}}=\frac{h^{2}-2 h-9}{(h-1)^{2}}
$$

A minimum occurs when $h^{2}-2 h-9=0$, so

$$
h=1 \pm \sqrt{10}=-2.1623,4.1623
$$

It follows that the minimum energy occurs when $h=1+\sqrt{10}=4.1623 \mathrm{~m}$, which give the height that a crow should fly to minimize the energy needed to break open a walnut.
8. The area of the brochure is $A=x y=125$, where x is the width of the page and y is the length of the page. The area of the printed page, which is to be maximized is given by

$$
P=(x-4)(y-5)
$$

From the constraint on the page area, we have $y=125 / x$, which when substituted above gives

$$
P(x)=(x-4)\left(\frac{125}{x}-5\right)=125-\frac{500}{x}-5 x+20=145-500 x^{-1}-5 x
$$

The maximum is found by differentiation, which gives

$$
P^{\prime}(x)=500 x^{-2}-5=\frac{5\left(100-x^{2}\right)}{x^{2}}
$$

This is zero when $x=10$. It follows that $y=12.5$. So the brochure has the dimensions 10×12.5 with the printed region having dimensions 6×7.5 or $45 \mathrm{in}^{2}$.
9. a. If $P_{0}=100$, then $P_{1}=600 e^{-0.1}=542.9$ and $P_{2}=6(542.9) e^{-0.5429}=1892.75$.
b. The derivative is $R^{\prime}(P)=6 e^{-0.001 P}(1-0.001 P)$. The critical P_{c} occurs at $P_{c}=1000$, so there is a maximum at $\left(1000,6000 e^{-1}\right)=(1000,2207)$. The graph passes through the origin, so $(0,0)$ is the only intercept. Since $\lim _{P \rightarrow \infty} R(P)=0$, the is a horizontal asymptote at $R=0$. The second derivative is $R^{\prime \prime}(P)=-0.006 e^{-0.001 P}(2-0.001 P)$, which is zero at $P=2000$. Thus, there is a point of inflection at $\left(2000,12000 e^{-2}\right)=(2000,1624)$. The graph is below.

c. The equilibria satisfy $P_{e}=6 P_{e} e^{-0.001 P_{e}}$, so either $P_{e}=0$ or $1=6 e^{-0.001 P_{e}}$. The latter gives $P_{e}=1000 \ln (6) \simeq 1792$. For $P_{e}=0, R^{\prime}(0)=6>1$, so this equilibrium is unstable with solutions moving monotonically away. For $P_{e}=1792, R^{\prime}(1792)=-0.7918$, so this equilibrium is stable with solutions oscillating and moving toward the equilibrium.
10. a. If $P_{0}=500$, then $P_{1}=8000 / 3.5^{2}=653.06$ and $P_{2}=574.346$.
b. The derivative is $H^{\prime}(P)=\frac{16(1+0.005 P)^{2}-32 P(1+0.005 P)(0.005)}{(1+0.005 P)^{4}}=\frac{16(1-0.005 P)}{(1+0.005 P)^{3}}$. The critical P_{c} occurs at $P_{c}=200$, so there is a maximum at $(200,800)$. The graph passes through the origin, so $(0,0)$ is the only intercept. Since $\lim _{P \rightarrow \infty} H(P)=0$, the is a horizontal asymptote at $H=0$. The second derivative is
$H^{\prime \prime}(P)=\frac{-0.08(1+0.005 P)^{3}-0.24(1-0.005 P)(1+0.005 P)^{2}}{(1+0.005 P)^{6}}=\frac{-0.16(2-0.005 P)}{(1+0.005 P)^{4}}$,
which is zero at $P=400$. Thus, there is a point of inflection at $(400,6400 / 9)=(400,711)$. The graph is above.
c. The equilibria satisfy $P_{e}=16 P_{e} /\left(1+0.005 P_{e}\right)^{2}$, so either $P_{e}=0$ or $\left(1+0.005 P_{e}\right)^{2}=16$. The latter gives $P_{e}=600$ (neglecting the negative solution). For $P_{e}=0, H^{\prime}(0)=16>1$, so this equilibrium is unstable with solutions moving monotonically away. For $P_{e}=600, H^{\prime}(600)=-0.5$, so this equilibrium is stable with solutions oscillating and moving toward the equilibrium.
11. a. The time as a function of x is given by

$$
T(x)=\frac{50-x}{15}+\frac{\left(x^{2}+1600\right)^{1 / 2}}{9}
$$

b. We differentiate $T(x)$ to find the minimum time,

$$
T^{\prime}(x)=-\frac{1}{15}+\frac{1}{9}\left(\frac{1}{2}\left(x^{2}+1600\right)^{-1 / 2} 2 x\right)=-\frac{1}{15}+\frac{x}{9\left(x^{2}+1600\right)^{1 / 2}} .
$$

Setting this derivative equal to zero gives

$$
\frac{x}{9\left(x^{2}+1600\right)^{1 / 2}}=\frac{1}{15}
$$

$$
\begin{aligned}
5 x & =3\left(x^{2}+1600\right)^{1 / 2} \\
25 x^{2} & =9\left(x^{2}+1600\right) \\
16 x^{2} & =14400 \\
x^{2} & =900
\end{aligned}
$$

This implies $x=30 \mathrm{~m}$ produces the minimum time. $T(30)=\frac{20}{15}+\frac{50}{9}=\frac{62}{9}=6.89 \mathrm{sec}$. We check the endpoints $T(0)=\frac{70}{9}=7.778 \mathrm{sec}$ and $T(50)=\frac{10 \sqrt{41}}{9}=7.11 \mathrm{sec}$, confirming the optimal escape strategy is for the rabbit to run 20 m along the road, then run straight toward the burrow.
12. a. At rest, $V(t)=-70=50 t(t-2)(t-3)-70$, so $50 t(t-2)(t-3)=0$. Thus, the membrane is at rest when $t=0,2$, and 3 .
b. To find the extrema, we first write $V(t)=50\left(t^{3}-5 t^{2}+6 t\right)-70$, then the derivative is $V^{\prime}(t)=50\left(3 t^{2}-10 t+6\right)$. By the quadratic formula, $t=\frac{5}{3} \pm \frac{\sqrt{7}}{3}=0.7847,2.5486$. Substituting these values into the membrane equation gives the peak of the action potential at $t=0.7847$ with a membrane potential of $V(0.7847)=35.63 \mathrm{mV}$, while the minimum potential (most hyperpolarized state) occurs at $t=2.5486$ with a membrane potential of $V(2.5486)=-101.56 \mathrm{mV}$. Below is a graph for this model of membrane potential.

13. The objective function is given by:

$$
S(x, y)=2 x^{2}+7 x y
$$

The constraint condition is given by:

$$
V=x^{2} y=50,000 \mathrm{~cm}^{3}, \quad \text { so, } \quad y=\frac{50,000}{x^{2}}
$$

Thus,

$$
S(x)=2 x^{2}+\frac{350,000}{x}
$$

Differentiating we have,

$$
S^{\prime}(x)=4 x-\frac{350,000}{x^{2}}
$$

Solving $S^{\prime}(x)=0$, so $x^{3}=\frac{350,000}{4}=87,500$ or $x=44.395$. It follows $y=25.37$. Thus, the minimum amount of material needed is $S(44.395)=11,825.6 \mathrm{~cm}^{2}$.
14. a. $L(0)=0.24 \mathrm{~m}(24 \mathrm{~cm})$ is the birth size a leopard shark (L-intercept). For large $t, L(t) \rightarrow$ 1.6 m . The graph of this von Bertalanffy equation is shown below. Sexual maturity is found by solving $L(t)=0.5=1.6(1-0.85 e-0.08 t)$ or $1.36 e^{-0.08 t}=1.1$ or $e^{0.08 t}=1.236$. It follows that sexual maturity occurs at $t=2.652 \mathrm{yr}$.
b. The composite function is given by

$$
W(t)=4.5\left(1.6\left(1-0.85 e^{-0.08 t}\right)\right)^{3}=18.432\left(1-0.85 e^{-0.08 t}\right)^{3}
$$

The intercept is $W(0)=0.0622 \mathrm{~kg}$, while for large $t, W(t) \rightarrow 18.432 \mathrm{~kg}$. The graph of this function is shown below.
c. By the chain rule, the derivative of $W(t)$ is

$$
W^{\prime}(t)=3(18.432)\left(1-0.85 e^{-0.08 t}\right)^{2}(-0.85)(-0.08) e^{-0.08 t}=3.76 e^{-0.08 t}\left(1-0.85 e^{-0.08 t}\right)^{2}
$$

By the product rule and chain rule, the second derivative is

$$
\begin{aligned}
& W^{\prime \prime}(t)=3.76\left(2 e^{-0.08 t}\left(1-0.85 e^{-0.08 t}\right)(-0.85)(-0.08) e^{-0.08 t}-0.08 e^{-0.08 t}\left(1-0.85 e^{-0.08 t}\right)^{2}\right) \\
& W^{\prime \prime}(t)=3.76 e^{-0.08 t}\left(1-0.85 e^{-0.08 t}\right)\left(0.204 e^{-0.08 t}-0.08\right)
\end{aligned}
$$

$W^{\prime \prime}(t)=0$ when either $1-0.85 e^{-0.08 t}=0$ or $0.204 e^{-0.08 t}-0.08=0$. The first is zero when $t=-2.03 \mathrm{yr}$, while the second is zero when $t=11.7 \mathrm{yr}$. It follows that the maximum weight gain occurs at age $t=11.7 \mathrm{yr}$ with a weight gain of $W^{\prime}(11.7)=0.655 \mathrm{~kg} / \mathrm{yr}$.

15. a. The periodic contractions of $10 / \mathrm{min}$ implies that the period is 0.1 min . Thus, $0.1 \omega=2 \pi$ or $\omega=20 \pi$. The average value $A=\frac{4+1}{2}=2.5$, while the amplitude is given by $B=4-2.5=1.5$. Thus, the radius of the small intestine is given by

$$
R(t)=2.5+1.5 \cos (20 \pi t)
$$

b. The graph of $R(t)$ for $t \in[0,0.2]$ is shown below. The maxima occur at $t=0,0.1,0.2 \mathrm{~min}$, and the minima are halfway between the maxima with $t=0.05,0.15 \mathrm{~min}$.
c. The equivalent sine form of the model is phase shifted by a quarter period or $\frac{1}{40} \mathrm{~min}$, so $\phi=0-\frac{1}{40}$. However, this is negative, so the principle phase shift requires adding one period or $\phi=-\frac{1}{40}+\frac{1}{10}=\frac{3}{40}$. The equivalent sine model is written:

$$
R(t)=2.5+1.5 \sin \left(20 \pi\left(t-\frac{3}{40}\right)\right)
$$

16. a. The period is 365 days, so $365 \omega=2 \pi$ or $\omega=\frac{2 \pi}{365} \simeq 0.01721$. The average length of time is $\alpha=\frac{1162+327}{2}=744.5 \mathrm{~min}$. The amplitude is given by $\beta=1162-744.5=417.5 \mathrm{~min}$. The maximum occurs on day 170 , so $\omega(170-\phi)=\pi / 2$ (based on the maximum of the sine function). Thus, $170-\phi=\frac{365}{4}=91.25$ or $\phi=78.75$ day. It follows that

$$
L(t)=744.5+417.5 \sin (0.01721(t-78.75))
$$

The length of day for Ground Hog's day is $L(32)=744.5+417.5 \sin (0.01721(32-78.75))=$ 443.7 min in Anchorage.
b. The equivalent cosine form of the model is phase shifted by a quarter period or 91.25 days, so $\phi=78.75+91.25=170$. Also, one can use that the maximum of the cosine model occurs at the phase shift. Thus, the equivalent cosine model is written:

$$
L(t)=744.5+417.5 \cos (0.01721(t-170))
$$

17. a. From P_{3}, we have $P_{3}=68.34=28.49(1+r)^{3}$, so $(1+r)=(68.34 / 28.49)^{1 / 3}=1.33863$. Thus, $r=0.33863$. Doubling time satisfies $2 P_{0}=P_{0}(1+r)^{n}$ or $n=\ln (2) / \ln (1+r)=2.377$ decades or 23.77 years.
b. The model predicts the population in 2000 is $P_{5}=28.49(1.33863)^{5}=122.46$ million. The percent error is $100 \frac{(122.46-99.93)}{99.93}=22.55 \%$.
c. From the logistic model, we obtain $P_{1}=39.32$ million and $P_{2}=52.79$ million.

d. To find equilibria, we solve $P_{e}=1.48 P_{e}-0.0035 P_{e}^{2}$, which gives $P_{e}=0$ or $P_{e}=137.14$ million. The derivative of the updating function is $F^{\prime}(P)=1.48-0.007 P$, so $F^{\prime}(137.14)=0.52$. It follows that this equilibrium is stable with solutions monotonically approaching this carrying capacity equilibrium.
18. a. From the high and low temperatures, A is the average, so $A=18^{\circ} \mathrm{C}$. The amplitude B is the difference between the maximum and the average, so $B=8^{\circ} \mathrm{C}$. The period is 24 hr , so $24 \omega=2 \pi$ or $\omega=\frac{\pi}{12} \simeq 0.2618$. The maximum temperature occurs at $4 \mathrm{PM}(t=16)$, so

$$
T(16)=26=18+8 \sin \left(\frac{\pi}{12}(16-\phi)\right) .
$$

It follows that

$$
\sin \left(\frac{\pi}{12}(16-\phi)\right)=1 \quad \text { or } \quad \frac{\pi}{12}(16-\phi)=\frac{\pi}{2} .
$$

Hence, $\phi=10$. The sine model becomes

$$
R(t)=18+8 \sin (0.2618(t-10))
$$

b. The equivalent cosine form of the model is phase shifted by a quarter period or 6 hr , so $\phi=10+6=16$. Again the phase shift for the cosine model is easy as it corresponds to the maximum. So, we obtain the equivalent cosine model:

$$
R(t)=18+8 \cos (0.2618(t-16)) .
$$

