
Math 122 Solutions - Fall 2012 Review Exam 1

1. The function, y = 5 sin(3x)− 4, has a period of x = 2π/3. The function oscillates about y = −4,
the vertical shift, with an amplitude of 5. It begins at (0,−4), goes to a maximum at (π/6, 1),
continues through (π/3,−4), then reaches a minimum at (π/2,−9), and ends its cycle at (2π/3,−4).
The maxima occur at x = π/6, 5π/6, 3π/2. The graph of the function is below.
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Problem 1 Problem 2

2. a. The function, y = 2 − 4 cos(2x), has a period of x = π. The function oscillates about y = 2
with an amplitude of 4. It begins at a minimum at (0,−2), goes to a maximum at (π/2, 6), then
ends its cycle at (π,−2). The maxima occur at x = π/2, 3π/2 with y values of 6. The graph of the
function is above.

b. The equivalent form has A = 2, B = 4, and ω = 2. Since the amplitude has a negative sign,
we phase shift the function by half a period or ϕ = π

2 . Thus,

y(x) = 2 + 4 cos
(
2
(
x− π

2

))
.

c. The notes show that the equivalent sine model is shifted a quarter period from the cosine
model in Part b. Thus, C = A, D = B, ν = ω, and ψ = ϕ− π

4 or

y(x) = 2 + 4 sin
(
2
(
x− π

4

))
.

3. a. The function, y(t) = 7 − 4 cos
(
π
8 (t− 5)

)
, has a period of T = 16. The function oscillates

about y = 7 (vertical shift) with an amplitude of 4. The phase shift is ϕ = 5. There is an absolute
maximum at (tmax, y(tmax)) = (13, 11). There is an absolute minimum at (tmin, y(tmin)) = (5, 3).
The graph of the function is below.

b. The equivalent form has A = 7, B = 4, and ω = π
8 . Since the amplitude has a negative sign,

we phase shift the function by half a period. It follows that ϕ = 5 + 8 = 13. Thus,

y(t) = 7 + 4 cos
(
π
8 (t− 13)

)
.
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Problem 3

c. The notes show that the equivalent sine model is shifted a quarter period from the cosine
model in Part b. Thus, C = A, D = B, ν = ω, and ψ = ϕ− 4 or

y(t) = 7 + 4 sin
(
π
8 (t− 9)

)
.

4. a. For the Logistic growth model, Pn+1 = F (Pn) = 2.8Pn − 0.0005P 2
n with P0 = 1000, then

P1 = 2.8(1000)− 0.0005(1000)2 = 2800− 500 = 2300

P2 = 2.8(2300)− 0.0005(2300)2 = 3795

b. At equilibrium, Pe = Pn = Pn+1, so Pe = 2.8Pe − 0.0005P 2
e or Pe(1.8− 0.0005Pe) = 0. One

solution is Pe = 0, and the other equilibrium satisfies 1.8 − 0.0005Pe = 0 or Pe = 1.8
0.0005 = 3600.

The derivative of the updating function is F ′(P ) = 2.8− 0.001P . At Pe = 0, F ′(0) = 2.8 > 1, so
this equilibrium is unstable with solutions monotonically growing away from Pe = 0. At Pe = 3600,
F ′(3600) = 2.8 − 3.6 = −0.8 > −1, so the higher equilibrium is stable with solutions oscillating,
but approaching Pe = 3600.

c. We see that F (P ) = P (2.8 − 0.0005P ), so the updating function has P -intercepts at P = 0
and P = 5600. The vertex has Pv = 2800, so F (2800) = 3920, which gives the vertex (2800, 3920).
The updating function intersects the identity function at the equilibria, (0, 0) and (3600, 3600).
The graph is shown below.



5. a. For the population model with the Allee effect, Nn+1 = Nn + 0.1Nn

(
1− 1

9(Nn − 5)2
)
with

(population in thousands) N0 = 4, the next two generations are

N1 = 4 + 0.1(4)

(
1− 1

9
(4− 5)2

)
= 4.356

N2 = 4.356 + 0.1(4.356)

(
1− 1

9
(4.356− 5)2

)
= 4.771

in thousands of birds.

b. Ne = Ne + 0.1Ne

(
1− 1

9(Ne − 5)2
)
, so 0.1Ne

(
1− 1

9(Ne − 5)2
)

= 0. Thus, Ne = 0 or

(Ne − 5)2 = 9. It follows that the equilibria are Ne = 0, 2, and 8.

c. From the expanded model, Nn+1 = A(Nn) =
37
45Nn +

1
9N

2
n − 1

90N
3
n, the derivative is A′(N) =

37
45 +

2
9N − 1

30N
2. At Ne = 0, A′(0) = 37

45 , so this equilibrium is a stable equilibrium with solutions
monotonically approaching 0. At Ne = 2, A′(2) = 17

15 , so this equilibrium is an unstable equilibrium
with solutions monotonically moving away from 2. At Ne = 8, A′(8) = 7

15 , so this equilibrium is a
stable equilibrium with solutions monotonically approaching 8.

d. Biologically, these results imply that if the population is below 2 thousand, then it will go to
extinction (Ne = 0). If the population is above 2 thousand, then the population of birds will grow
to a carrying capacity of Ne = 8 thousand.

6. The volume of the open box satisfies the Objective function

V (x, y) = x2y.

The Constraint condition on the surface area of this box is given by

SA = x2 + 4xy = 600.

This constraint condition yields y = 600−x2

4x , which when substituted into the objective function
produces a function of one variable:

V (x) = x2
(
600− x2

4x

)
=

1

4
(600x− x3).



Differentiating this quantity, we obtain

dV

dx
=

1

4
(600− 3x2),

which when set equal to zero gives x = 10
√
2. (Take only the positive root.) This value of x gives

the optimal length of one side of the base, which when substituted into the formula above gives
y = 5

√
2. It follows that the maximum volume for this box is V (x) = 1000

√
2.

7. Combining the number of drops with the energy function, we have

E(h) = hN(h) = h

(
1 +

10

h− 1

)
= h

(
h− 1 + 10

h− 1

)
=
h2 + 9h

h− 1
.

This is differentiated to give

E ′(h) =
(h− 1)(2h+ 9)− (h2 + 9h)

(h− 1)2
=
h2 − 2h− 9

(h− 1)2
.

A minimum occurs when h2 − 2h− 9 = 0, so

h = 1±
√
10 = −2.1623, 4.1623.

It follows that the minimum energy occurs when h = 1 +
√
10 = 4.1623 m, which give the height

that a crow should fly to minimize the energy needed to break open a walnut.

8. The area of the brochure is A = xy = 125, where x is the width of the page and y is the length
of the page. The area of the printed page, which is to be maximized is given by

P = (x− 4)(y − 5).

From the constraint on the page area, we have y = 125/x, which when substituted above gives

P (x) = (x− 4)

(
125

x
− 5

)
= 125− 500

x
− 5x+ 20 = 145− 500x−1 − 5x.

The maximum is found by differentiation, which gives

P ′(x) = 500x−2 − 5 =
5(100− x2)

x2
.

This is zero when x = 10. It follows that y = 12.5. So the brochure has the dimensions 10×12.5
with the printed region having dimensions 6×7.5 or 45 in2.

9. a. If P0 = 100, then P1 = 600e−0.1 = 542.9 and P2 = 6(542.9)e−0.5429 = 1892.75.

b. The derivative is R ′(P ) = 6e−0.001P (1 − 0.001P ). The critical Pc occurs at Pc = 1000, so
there is a maximum at (1000, 6000e−1) = (1000, 2207). The graph passes through the origin, so
(0, 0) is the only intercept. Since limP→∞R(P ) = 0, the is a horizontal asymptote at R = 0. The
second derivative is R ′′(P ) = −0.006e−0.001P (2− 0.001P ), which is zero at P = 2000. Thus, there
is a point of inflection at (2000, 12000e−2) = (2000, 1624). The graph is below.



Problem 9 Problem 10

c. The equilibria satisfy Pe = 6Pee
−0.001Pe , so either Pe = 0 or 1 = 6e−0.001Pe . The latter gives

Pe = 1000 ln(6) ≃ 1792. For Pe = 0, R ′(0) = 6 > 1, so this equilibrium is unstable with solutions
moving monotonically away. For Pe = 1792, R ′(1792) = −0.7918, so this equilibrium is stable with
solutions oscillating and moving toward the equilibrium.

10. a. If P0 = 500, then P1 = 8000/3.52 = 653.06 and P2 = 574.346.

b. The derivative is H ′(P ) =
16(1 + 0.005P )2 − 32P (1 + 0.005P )(0.005)

(1 + 0.005P )4
=

16(1− 0.005P )

(1 + 0.005P )3
.

The critical Pc occurs at Pc = 200, so there is a maximum at (200, 800). The graph passes through
the origin, so (0, 0) is the only intercept. Since limP→∞H(P ) = 0, the is a horizontal asymptote
at H = 0. The second derivative is

H ′′(P ) =
−0.08(1 + 0.005P )3 − 0.24(1− 0.005P )(1 + 0.005P )2

(1 + 0.005P )6
=

−0.16(2− 0.005P )

(1 + 0.005P )4
,

which is zero at P = 400. Thus, there is a point of inflection at (400, 6400/9) = (400, 711). The
graph is above.

c. The equilibria satisfy Pe = 16Pe/(1 + 0.005Pe)
2, so either Pe = 0 or (1 + 0.005Pe)

2 = 16.
The latter gives Pe = 600 (neglecting the negative solution). For Pe = 0, H ′(0) = 16 > 1, so this
equilibrium is unstable with solutions moving monotonically away. For Pe = 600, H ′(600) = −0.5,
so this equilibrium is stable with solutions oscillating and moving toward the equilibrium.

11. a. The time as a function of x is given by

T (x) =
50− x

15
+

(x2 + 1600)1/2

9
.

b. We differentiate T (x) to find the minimum time,

T ′(x) = − 1

15
+

1

9

(
1

2
(x2 + 1600)−1/22x

)
= − 1

15
+

x

9(x2 + 1600)1/2
.

Setting this derivative equal to zero gives

x

9(x2 + 1600)1/2
=

1

15



5x = 3(x2 + 1600)1/2

25x2 = 9(x2 + 1600)

16x2 = 14400

x2 = 900

This implies x = 30 m produces the minimum time. T (30) = 20
15 + 50

9 = 62
9 = 6.89 sec. We check

the endpoints T (0) = 70
9 = 7.778 sec and T (50) = 10

√
41

9 = 7.11 sec, confirming the optimal escape
strategy is for the rabbit to run 20 m along the road, then run straight toward the burrow.

12. a. At rest, V (t) = −70 = 50t(t− 2)(t− 3)− 70, so 50t(t− 2)(t− 3) = 0. Thus, the membrane
is at rest when t = 0, 2, and 3.

b. To find the extrema, we first write V (t) = 50(t3 − 5t2 + 6t) − 70, then the derivative is

V ′(t) = 50(3t2 − 10t + 6). By the quadratic formula, t = 5
3 ±

√
7
3 = 0.7847, 2.5486. Substituting

these values into the membrane equation gives the peak of the action potential at t = 0.7847 with a
membrane potential of V (0.7847) = 35.63 mV, while the minimum potential (most hyperpolarized
state) occurs at t = 2.5486 with a membrane potential of V (2.5486) = −101.56 mV. Below is a
graph for this model of membrane potential.

13. The objective function is given by:

S(x, y) = 2x2 + 7xy.

The constraint condition is given by:

V = x2y = 50, 000 cm3, so, y =
50, 000

x2
.

Thus,

S(x) = 2x2 +
350, 000

x
.

Differentiating we have,

S′(x) = 4x− 350, 000

x2
.



Solving S′(x) = 0, so x3 = 350,000
4 = 87, 500 or x = 44.395. It follows y = 25.37. Thus, the

minimum amount of material needed is S(44.395) = 11, 825.6 cm2.

14. a. L(0) = 0.24 m (24 cm) is the birth size a leopard shark (L-intercept). For large t, L(t) →
1.6 m. The graph of this von Bertalanffy equation is shown below. Sexual maturity is found by
solving L(t) = 0.5 = 1.6(1 − 0.85e−0.08t) or 1.36e−0.08t = 1.1 or e0.08t = 1.236. It follows that
sexual maturity occurs at t = 2.652 yr.

b. The composite function is given by

W (t) = 4.5(1.6(1− 0.85e−0.08t))3 = 18.432(1− 0.85e−0.08t)3.

The intercept is W (0) = 0.0622 kg, while for large t, W (t) → 18.432 kg. The graph of this function
is shown below.

c. By the chain rule, the derivative of W (t) is

W ′(t) = 3(18.432)(1− 0.85e−0.08t)2(−0.85)(−0.08)e−0.08t = 3.76e−0.08t(1− 0.85e−0.08t)2.

By the product rule and chain rule, the second derivative is

W ′′(t) = 3.76
(
2e−0.08t(1− 0.85e−0.08t)(−0.85)(−0.08)e−0.08t − 0.08e−0.08t(1− 0.85e−0.08t)2

)
W ′′(t) = 3.76e−0.08t(1− 0.85e−0.08t)(0.204e−0.08t − 0.08)

W ′′(t) = 0 when either 1 − 0.85e−0.08t = 0 or 0.204e−0.08t − 0.08 = 0. The first is zero when
t = −2.03 yr, while the second is zero when t = 11.7 yr. It follows that the maximum weight gain
occurs at age t = 11.7 yr with a weight gain of W ′(11.7) = 0.655 kg/yr.

Problem 13a Problem 13b

15. a. The periodic contractions of 10/min implies that the period is 0.1 min. Thus, 0.1ω = 2π or
ω = 20π. The average value A = 4+1

2 = 2.5, while the amplitude is given by B = 4 − 2.5 = 1.5.
Thus, the radius of the small intestine is given by

R(t) = 2.5 + 1.5 cos(20πt).



b. The graph of R(t) for t ∈ [0, 0.2] is shown below. The maxima occur at t = 0, 0.1, 0.2 min,
and the minima are halfway between the maxima with t = 0.05, 0.15 min.

c. The equivalent sine form of the model is phase shifted by a quarter period or 1
40 min, so

ϕ = 0 − 1
40 . However, this is negative, so the principle phase shift requires adding one period or

ϕ = − 1
40 + 1

10 = 3
40 . The equivalent sine model is written:

R(t) = 2.5 + 1.5 sin
(
20π

(
t− 3

40

))
.

16. a. The period is 365 days, so 365ω = 2π or ω = 2π
365 ≃ 0.01721. The average length of time

is α = 1162+327
2 = 744.5 min. The amplitude is given by β = 1162 − 744.5 = 417.5 min. The

maximum occurs on day 170, so ω(170 − ϕ) = π/2 (based on the maximum of the sine function).
Thus, 170− ϕ = 365

4 = 91.25 or ϕ = 78.75 day. It follows that

L(t) = 744.5 + 417.5 sin(0.01721(t− 78.75)).

The length of day for Ground Hog’s day is L(32) = 744.5 + 417.5 sin(0.01721(32 − 78.75)) =
443.7 min in Anchorage.

b. The equivalent cosine form of the model is phase shifted by a quarter period or 91.25 days,
so ϕ = 78.75+91.25 = 170. Also, one can use that the maximum of the cosine model occurs at the
phase shift. Thus, the equivalent cosine model is written:

L(t) = 744.5 + 417.5 cos(0.01721(t− 170)).

17. a. From P3, we have P3 = 68.34 = 28.49(1+ r)3, so (1+ r) = (68.34/28.49)1/3 = 1.33863. Thus,
r = 0.33863. Doubling time satisfies 2P0 = P0(1 + r)n or n = ln(2)/ ln(1 + r) = 2.377 decades or
23.77 years.

b. The model predicts the population in 2000 is P5 = 28.49(1.33863)5 = 122.46 million. The

percent error is 100 (122.46−99.93)
99.93 = 22.55%.

c. From the logistic model, we obtain P1 = 39.32 million and P2 = 52.79 million.



d. To find equilibria, we solve Pe = 1.48Pe−0.0035P 2
e , which gives Pe = 0 or Pe = 137.14 million.

The derivative of the updating function is F ′(P ) = 1.48− 0.007P , so F ′(137.14) = 0.52. It follows
that this equilibrium is stable with solutions monotonically approaching this carrying capacity
equilibrium.

18. a. From the high and low temperatures, A is the average, so A = 18◦C. The amplitude B is the
difference between the maximum and the average, so B = 8◦C. The period is 24 hr, so 24ω = 2π
or ω = π

12 ≃ 0.2618. The maximum temperature occurs at 4 PM (t = 16), so

T (16) = 26 = 18 + 8 sin

(
π

12
(16− ϕ)

)
.

It follows that

sin

(
π

12
(16− ϕ)

)
= 1 or

π

12
(16− ϕ) =

π

2
.

Hence, ϕ = 10. The sine model becomes

R(t) = 18 + 8 sin(0.2618(t− 10)).



b. The equivalent cosine form of the model is phase shifted by a quarter period or 6 hr, so
ϕ = 10 + 6 = 16. Again the phase shift for the cosine model is easy as it corresponds to the
maximum. So, we obtain the equivalent cosine model:

R(t) = 18 + 8 cos(0.2618(t− 16)).


