
Math 122 Solutions - Fall 2010 Review Exam 1

1. The function, y = 2− 4 cos(2x), has a period of x = π. The function oscillates about y = 2 with
an amplitude of 4. It begins at a minimum at (0,−2), goes to a maximum at (π/2, 6), then ends
its cycle at (π,−2). The maxima occur at x = π/2, 3π/2. The graph of the function is below.

Problem 1 Problem 2

2. The function, y = 5 sin(3x)− 4, has a period of x = 2π/3. The function oscillates about y = −4
with an amplitude of 5. It begins at (0,−4), goes to a maximum at (π/6, 1), continues through
(π/3,−4), then reaches a minimum at (π/2,−9), and ends its cycle at (2π/3,−4). The maxima
occur at x = π/6, 5π/6, 3π/2. The graph of the function is above.

3. The function, y(t) = 7− 4 cos
(
π
8 (t− 5)

)
, has a period of T = 16. The function oscillates about

y = 7 (vertical shift) with an amplitude of 4. The phase shift is φ = 5. There is an absolute
maximum at (tmax, y(tmax)) = (13, 11). There is an absolute minimum at (tmin, y(tmin)) = (5, 3).
The graph of the function is below.

4. a. For the Logistic growth model, Pn+1 = F (Pn) = 2.8Pn − 0.0005P 2
n with P0 = 1000, then

P1 = 2.8(1000)− 0.0005(1000)2 = 2800− 500 = 2300
P2 = 2.8(2300)− 0.0005(2300)2 = 3795

b. At equilibrium, Pe = Pn = Pn+1, so Pe = 2.8Pe − 0.0005P 2
e or Pe(1.8− 0.0005Pe) = 0. One

solution is Pe = 0, and the other equilibrium satisfies 1.8 − 0.0005Pe = 0 or Pe = 1.8
0.0005 = 3600.

The derivative of the updating function is F ′(P ) = 2.8 − 0.001P . At Pe = 0, F ′(0) = 2.8 > 1, so
this equilibrium is unstable with solutions monotonically growing away from Pe = 0. At Pe = 3600,
F ′(3600) = 2.8 − 3.6 = −0.8 > −1, so the higher equilibrium is stable with solutions oscillating,
but approaching Pe = 3600.



4

6

8

10

y

0 2 4 6 8 10 12 14 16 18 20

t

Problem 3

c. We see that F (P ) = P (2.8 − 0.0005P ), so the updating function has P -intercepts at P = 0
and P = 5600. The vertex has Pv = 2800, so F (2800) = 3920, which gives the vertex (2800, 3920).
The updating function intersects the identity function at the equilibria, (0, 0) and (3600, 3600).
The graph is shown below.

5. a. For the population model with the Allee effect, Nn+1 = Nn + 0.1Nn

(
1− 1

9(Nn − 5)2
)

with
(population in thousands) N0 = 4, the next two generations are

N1 = 4 + 0.1(4)
(

1− 1
9

(4− 5)2
)

= 4.356

N2 = 4.356 + 0.1(4.356)
(

1− 1
9

(4.356− 5)2
)

= 4.771

in thousands of birds.



b. Ne = Ne + 0.1Ne

(
1− 1

9(Ne − 5)2
)
, so 0.1Ne

(
1− 1

9(Ne − 5)2
)

= 0. Thus, Ne = 0 or
(Ne − 5)2 = 9. It follows that the equilibria are Ne = 0, 2, and 8.

c. From the expanded model, Nn+1 = A(Nn) = 37
45Nn + 1

9N
2
n − 1

90N
3
n, the derivative is A′(N) =

37
45 + 2

9N − 1
30N

2. At Ne = 0, A′(0) = 37
45 , so this equilibrium is a stable equilibrium with solutions

monotonically approaching 0. At Ne = 2, A′(2) = 17
15 , so this equilibrium is an unstable equilibrium

with solutions monotonically moving away from 2. At Ne = 8, A′(8) = 7
15 , so this equilibrium is a

stable equilibrium with solutions monotonically approaching 8.

d. Biologically, these results imply that if the population is below 2 thousand, then it will go to
extinction (Ne = 0). If the population is above 2 thousand, then the population of birds will grow
to a carrying capacity of Ne = 8 thousand.

6. The area of the brochure is A = xy = 125, where x is the width of the page and y is the length
of the page. The area of the printed page, which is to be maximized is given by

P = (x− 4)(y − 5).

From the constraint on the page area, we have y = 125/x, which when substituted above gives

P (x) = (x− 4)
(

125
x
− 5

)
= 125− 500

x
− 5x+ 20 = 145− 500x−1 − 5x.

The maximum is found by differentiation, which gives

P ′(x) = 500x−2 − 5 =
5(100− x2)

x2
.

This is zero when x = 10. It follows that y = 12.5. So the brochure has the dimensions 10×12.5
with the printed region having dimensions 6×7.5 or 45 in2.

7. The volume of the open box satisfies the Objective function

V (x, y) = x2y.

The Constraint condition on the surface area of this box is given by

SA = x2 + 4xy = 600.

This constraint condition yields y = 600−x2

4x , which when substituted into the objective function
produces a function of one variable:

V (x) = x2

(
600− x2

4x

)
=

1
4

(600x− x3).

Differentiating this quantity, we obtain

dV

dx
=

1
4

(600− 3x2),

which when set equal to zero gives x = 10
√

2. (Take only the positive root.) This value of x gives
the optimal length of one side of the base, which when substituted into the formula above gives
y = 5

√
2. It follows that the maximum volume for this box is V (x) = 1000

√
2.



8. Combining the number of drops with the energy function, we have

E(h) = hN(h) = h

(
1 +

10
h− 1

)
= h

(
h− 1 + 10
h− 1

)
=
h2 + 9h
h− 1

.

This is differentiated to give

E′(h) =
(h− 1)(2h+ 9)− (h2 + 9h)

(h− 1)2
=
h2 − 2h− 9

(h− 1)2
.

A minimum occurs when h2 − 2h− 9 = 0, so

h = 1±
√

10 = −2.1623, 4.1623.

It follows that the minimum energy occurs when h = 1 +
√

10 = 4.1623 m, which give the height
that a crow should fly to minimize the energy needed to break open a walnut.

9. a. If P0 = 100, then P1 = 600e−0.1 = 542.9 and P2 = 6(542.9)e−0.5429 = 1892.75.

b. The derivative is R ′(P ) = 6e−0.001P (1 − 0.001P ). The critical Pc occurs at Pc = 1000, so
there is a maximum at (1000, 6000e−1) = (1000, 2207). The graph passes through the origin, so
(0, 0) is the only intercept. Since limP→∞R(P ) = 0, the is a horizontal asymptote at R = 0. The
second derivative is R ′′(P ) = −0.006e−0.001P (2− 0.001P ), which is zero at P = 2000. Thus, there
is a point of inflection at (2000, 12000e−2) = (2000, 1624). The graph is below.

c. The equilibria satisfy Pe = 6Pee−0.001Pe , so either Pe = 0 or 1 = 6e−0.001Pe . The latter gives
Pe = 1000 ln(6) ' 1792. For Pe = 0, R ′(0) = 6 > 1, so this equilibrium is unstable with solutions
moving monotonically away. For Pe = 1792, R ′(1792) = −0.7918, so this equilibrium is stable with
solutions oscillating and moving toward the equilibrium.

Problem 9 Problem 10

10. a. If P0 = 500, then P1 = 8000/3.52 = 653.06 and P2 = 574.346.



b. The derivative is H ′(P ) =
16(1 + 0.005P )2 − 32P (1 + 0.005P )(0.005)

(1 + 0.005P )4
=

16(1− 0.005P )
(1 + 0.005P )3

.

The critical Pc occurs at Pc = 200, so there is a maximum at (200, 800). The graph passes through
the origin, so (0, 0) is the only intercept. Since limP→∞H(P ) = 0, the is a horizontal asymptote
at H = 0. The second derivative is

H ′′(P ) =
−0.08(1 + 0.005P )3 − 0.24(1− 0.005P )(1 + 0.005P )2

(1 + 0.005P )6
=
−0.16(2− 0.005P )

(1 + 0.005P )4
,

which is zero at P = 400. Thus, there is a point of inflection at (400, 6400/9) = (400, 711). The
graph is above.

c. The equilibria satisfy Pe = 16Pe/(1 + 0.005Pe)2, so either Pe = 0 or (1 + 0.005Pe)2 = 16.
The latter gives Pe = 600 (neglecting the negative solution). For Pe = 0, H ′(0) = 16 > 1, so this
equilibrium is unstable with solutions moving monotonically away. For Pe = 600, H ′(600) = −0.5,
so this equilibrium is stable with solutions oscillating and moving toward the equilibrium.

11. a. At rest, V (t) = −70 = 50t(t− 2)(t− 3)− 70, so 50t(t− 2)(t− 3) = 0. Thus, the membrane
is at rest when t = 0, 2, and 3.

b. To find the extrema, we first write V (t) = 50(t3 − 5t2 + 6t) − 70, then the derivative is
V ′(t) = 50(3t2 − 10t + 6). By the quadratic formula, t = 5

3 ±
√

7
3 = 0.7847, 2.5486. Substituting

these values into the membrane equation gives the peak of the action potential at t = 0.7847 with a
membrane potential of V (0.7847) = 35.63 mV, while the minimum potential (most hyperpolarized
state) occurs at t = 2.5486 with a membrane potential of V (2.5486) = −101.56 mV. Below is a
graph for this model of membrane potential.

12. a. The time as a function of x is given by

T (x) =
50− x

15
+

(x2 + 1600)1/2

9
.



b. We differentiate T (x) to find the minimum time,

T ′(x) = − 1
15

+
1
9

(
1
2

(x2 + 1600)−1/22x
)

= − 1
15

+
x

9(x2 + 1600)1/2
.

Setting this derivative equal to zero gives

x

9(x2 + 1600)1/2
=

1
15

5x = 3(x2 + 1600)1/2

25x2 = 9(x2 + 1600)
16x2 = 14400
x2 = 900

This implies x = 30 m produces the minimum time. T (30) = 20
15 + 50

9 = 62
9 = 6.89 sec. We check

the endpoints T (0) = 70
9 = 7.778 sec and T (50) = 10

√
41

9 = 7.11 sec, confirming the optimal escape
strategy is for the rabbit to run 20 m along the road, then run straight toward the burrow.

13. The objective function is given by:

S(x, y) = 2x2 + 7xy.

The constraint condition is given by:

V = x2y = 50, 000 cm3, so, y =
50, 000
x2

.

Thus,

S(x) = 2x2 +
350, 000

x
.

Differentiating we have,

S′(x) = 4x− 350, 000
x2

.

Solving S′(x) = 0, so x3 = 350,000
4 = 87, 500 or x = 44.395. It follows y = 25.37. Thus, the

minimum amount of material needed is S(44.395) = 11, 825.6 cm2.

14. From the diagrams, we have that r2 + h2 = a2, which gives h2 = a2 − r2. The circumference of
the base of the cone is 2πr = aθ, where θ is in radians. (Radians are an easy means of determining
the length of a sector of a circle.) Thus, r = aθ/2π. It follows that h2 = a2 − a2θ2/(4π2). The
volume of the water cup is given by

V =
πr2h

3
=
π

3

(
aθ

2π

)2
√
a2 − a2θ2

4π2

V (θ) =
a3θ2

12π

√
1− θ2

4π2
=

a3

12π
θ2

(
1− θ2

4π2

)1/2

.

This expression is differentiated with respect to θ.

V ′(θ) =
a3

12π


θ

2

2

(
1− θ2

4π2

)−1/2 (−2θ
4π2

)
+ 2θ

(
1− θ2

4π2

)1/2





=
a3

12π
(
1− θ2

4π2

)1/2

(
−θ3

4π2
+ 2θ

(
1− θ2

4π2

))

=
a3θ

12π
(
1− θ2

4π2

)1/2

(
2− 3θ2

4π2

)

The maximum is found by setting this derivative above equal to zero, so 2 − 3θ2

4π2 = 0. It follows
that θ2 = 8π2/3 or

θ = 2π
√

2
3
' 5.1302.

Thus, θ = 2π
√

2
3 ' 5.1302 radians (which is about 294◦), so a sector of 1.1530 radians or about 66◦

is removed. The dimensions of the cone should have a radius of r = a
√

2
3 ' 0.8165a and a height

of h = a
√

1
3 ' 0.57735a.

15. a. L(0) = 0.24 m (24 cm) is the birth size a leopard shark (L-intercept). For large t, L(t) →
1.6 m. The graph of this von Bertalanffy equation is shown below. Sexual maturity is found by
solving L(t) = 0.5 = 1.6(1 − 0.85e−0.08t) or 1.36e−0.08t = 1.1 or e0.08t = 1.236. It follows that
sexual maturity occurs at t = 2.652 yr.

b. The composite function is given by

W (t) = 4.5(1.6(1− 0.85e−0.08t))3 = 18.432(1− 0.85e−0.08t)3.

The intercept is W (0) = 0.0622 kg, while for large t, W (t)→ 18.432 kg. The graph of this function
is shown below.

c. By the chain rule, the derivative of W (t) is

W ′(t) = 3(18.432)(1− 0.85e−0.08t)2(−0.85)(−0.08)e−0.08t = 3.76e−0.08t(1− 0.85e−0.08t)2.

By the product rule and chain rule, the second derivative is

W ′′(t) = 3.76
(
2e−0.08t(1− 0.85e−0.08t)(−0.85)(−0.08)e−0.08t − 0.08e−0.08t(1− 0.85e−0.08t)2

)

W ′′(t) = 3.76e−0.08t(1− 0.85e−0.08t)(0.204e−0.08t − 0.08)

W ′′(t) = 0 when either 1 − 0.85e−0.08t = 0 or 0.204e−0.08t − 0.08 = 0. The first is zero when
t = −2.03 yr, while the second is zero when t = 11.7 yr. It follows that the maximum weight gain
occurs at age t = 11.7 yr with a weight gain of W ′(11.7) = 0.655 kg/yr.

16. a. The periodic contractions of 10/min implies that 0.1ω = 2π or ω = 20π. The average value
A = 4+1

2 = 2.5, while the amplitude is given by B = 4 − 2.5 = 1.5. Thus, the radius of the small
intestine is given by

R(t) = 2.5 + 1.5 cos(20πt).

b. The graph of R(t) for t ∈ [0, 0.2] is shown below. The maxima occur at t = 0, 0.1, 0.2 min,
and the minima are halfway between the maxima with t = 0.05, 0.15 min.



Problem 13a Problem 13b

17. The period is 365 days, so 365ω = 2π or ω = 2π
365 ' 0.01721. The average length of time

is α = 1162+327
2 = 744.5 min. The amplitude is given by β = 1162 − 744.5 = 417.5 min. The

maximum occurs on day 170, so ω(170 − φ) = π/2 (based on the maximum of the sine function).
Thus, 170− φ = 365

4 = 91.25 or φ = 78.75 day. It follows that

L(t) = 744.5 + 417.5 sin(0.01721(t− 78.75)).

The length of day for Ground Hog’s day is L(32) = 744.5 + 417.5 sin(0.01721(32 − 78.75)) =
443.7 min in Anchorage.

18. a. From P3, we have P3 = 68.34 = 28.49(1 + r)3, so (1 + r) = (68.34/28.49)1/3 = 1.33863. Thus,
r = 0.33863. Doubling time satisfies 2P0 = P0(1 + r)n or n = ln(2)/ ln(1 + r) = 2.377 decades or
23.77 years.

b. The model predicts the population in 2000 is P5 = 28.49(1.33863)5 = 122.46 million. The
percent error is 100 (122.46−99.93)

99.93 = 22.55%.

c. From the logistic model, we obtain P1 = 39.32 million and P2 = 52.79 million.

d. To find equilibria, we solve Pe = 1.48Pe−0.0035P 2
e , which gives Pe = 0 or Pe = 137.14 million.

The derivative of the updating function is F ′(P ) = 1.48− 0.007P , so F ′(137.14) = 0.52. It follows
that this equilibrium is stable with solutions monotonically approaching this carrying capacity
equilibrium.

19. From the high and low temperatures, A is the average, so A = 18◦C. The amplitude B is the
difference between the maximum and the average, so B = 8◦C. The period is 24 hr, so 24ω = 2π
or ω = π

12 ' 0.2618. The minimum temperature occurs at 4 AM (t = 4), so

T (4) = 10 = 18− 8 sin
(
π

12
(4− φ)

)
.



It follows that
sin
(
π

12
(4− φ)

)
= 1 or

π

12
(4− φ) =

π

2
.

Hence, φ = −2. If we want φ ∈ [0, 24], then by periodicity we can simply add 24 to obtain φ = 22.
(Both answers for φ are correct, but if the restriction on φ is required, we can only obtain the
second answer.)




