
Fall 2010 Math 122 Practice Lab Exam 3

Give all answers to at least 4 significant figures.

1. When a monoculture of an organism is grown in a limited (but renewed) medium, then the
population of that organism often follows the logistic growth model. Below is a table with popula-
tion data for two species of yeast growing for 90 hours in monocultures of a limited medium. The
populations are given in 1000/cc.

t (hr) Species X Species Y

0 0.71 0.62

10 1.82 1.13

20 3.77 1.91

30 6.44 3.03

40 8.25 3.96

50 8.91 4.87

60 9.32 5.55

70 9.46 6.04

80 9.52 6.25

90 9.48 6.18

a. The logistic growth model for species X is given by

dX

dt
= rX

(

1 −
X

M

)

, X(0) = X0.

Similarly, the logistic growth model for species Y is given by

dY

dt
= sY

(

1 −
Y

N

)

, Y (0) = Y0.

Give the general solution to each of these models, then find the best parameters X0, Y0, r, s, M ,
and N that fit the data above. (A reasonable first guess for the parameters r and s is 0.1 for both
of them.) Also, give the sum of square errors between the data and the model with the best fitting
parameters for each of the species. What is the limiting population or carrying capacity for each
of these monocultures?

b. When these two species are combined in a single experiment with limited medium, they
compete for the available nutrient. The competition model satisfies the system of differential
equations given by:

dX

dt
= rX

(
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)

− bXY = F (X,Y ),

dY

dt
= sY

(
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Y

N

)

− cXY = G(X,Y ),

where the parameters r, s, M , and N are the same as parameters found for the monocultures.
Suppose that experiments find that the species interaction terms are b = 0.025 and c = 0.014.
Use this information to find the four possible equilibria for this competition model. (Equilibria are
found by solving dX/dt = 0 and dY/dt = 0.)



c. There is no exact solution to this system of differential equations. However, the solution of
this system can be approximated using Euler’s method with the following formula:

Xn+1 = Xn + hF (Xn, Yn),

Yn+1 = Yn + hG(Xn, Yn),

where h is the stepsize. Let X(0) = X0 = 0.5 and Y (0) = Y0 = 0.5 with h = 1. Simulate this model
for 200 hours. Give the approximate populations of X and Y at times t = 25, 50, 100, and 200
hours. Does this model exhibit competitive exclusion or coexistence of the species? If this model
exhibits competitive exclusion, then determine the maximum population of the species that goes
extinct and when that occurs. If there is coexistence, then determine how long until both species
are within 90% of the coexistence equilibrium. Describe what happens in this culture for a long
period of time. (Use your information from the equilibria calculated in Part b.)

2. In lecture we noted that damped oscillators arise in a number of biological applications. A
damped oscillator is derived from a mass-spring problem with resistance and satisfies a second
order differential equation. We briefly examined these differential equations at the beginning of our
section on differential equations.

a. Consider the damped oscillator given by the differential equation:

d2y

dt2
+ 0.4

dy

dt
+ 9.04y = 0, y(0) = 1,

dy(0)

dt
= 2,

where d2y
dt2

is the second derivative of the unknown function y(t). Solve this problem using Maple.
(See Special Maple Help Page.) Find the first two relative minima and maxima for t ∈ [0, 6]. Also,
determine the absolute minimum and absolute maximum for t ∈ [0, 6].

b. One very important physiological system that has evolved to use damped oscillators is our
hearing. The basilar membrane (inside the inner ear) is a structure that extends along the cochlea
with 20,000-30,000 reed-like fibers that stretch across the width of the cochlea, beginning with short
stiff structures and becoming longer and less stiff. These fibers are tuned to specific frequencies
and respond like a forced damped oscillator. They vibrate and stimulate the hair cells, which
produce nerve signals, allowing us to hear particular frequencies of sound. Sound enters the ear as
a compression wave with the wavelength determining the sound. The reed-like fibers of the basilar
membrane act like damped oscillators that are being forced by a particular frequency.

A simplified model for the displacement of the reed-like fibers (RLF) (y(t)) is given by the
differential equation:

d2y

dt2
+ c

dy

dt
+ ky = F0 sin(at), y(0) = 0,

dy(0)

dt
= 0,

where t is in milliseconds and the forcing function F0 sin(at) represents the incoming sound. Let the
damping coefficient c = 0.2 (which in general would vary with the thickness of the structure) and
assume that the amplitude of the sound is given by F0 = 5. There are two parameters remaining
in this model, k, which represents the characteristics of the particular RLFs, and a, which gives
the frequency of the incoming sound waves.

Let k = 9.01 and find the value of the solution for a = 2.85 at times t = 2 and 20. Repeat this
for a = 3.0 at times t = 2 and 20.

http://www-rohan.sdsu.edu/~jmahaffy/courses/f00/math122/images/maple_de_2.htm


c. In this part of the study we examine how the RLFs respond to sounds. Start with k = 9.01
to test how this RLF responds to the six test sounds with a = 2.85, 3.0, 3.15, 3.3, 3.45, and 3.6 (or
454, 477, 501, 525, 549, and 573 Hz, respectively). Create the solutions to the differential equation
with each of the six test sounds. Use Maple to plot the solutions for t ∈ [0, 50]. Use the plots
to estimate the maximum response of the RLF to each of the six test sounds to within 0.5, i.e.,
state that the maximum response is between say 4 and 4.5 (simply using the graphs). If there is a
threshold value of y ≥ 6 for at least 10 oscillations to stimulate the nerve, then determine which of
the test sounds above result in a nerve signal occurring.

d. Repeat Part c with k = 12.01.


