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Why social networks?

A long-standing area of study

Seminal papers Milgram (1967), Granovetter (1973),
Zachary (1977), Freeman (1979), . . .

Texbooks/Overviews Wasserman (1994), Borgatti et al.
(2013)

1 Seminal work in the 90s (discussed below)

2 Explosion of world wide web

3 Fresh interest because of social media

4 Success in understanding networks of other kinds proviodes insight
into social networks Newman (2010)
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Why networks?

Complex systems

Large entities with many interacting parts that can function cooperatively
(note the word can) to get things done that none of the parts could get
done alone.

1 Network: A view of a system with parts that enter into recurring
relations

2 The pattern of connections may be complex, but the way in which
system elements are connected is uniform
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Examples

System Element Connection

CNS neuron neural connection
Internet websites hyperlink
Power grid power stations electrical transmission lines
Company employees management relations
Food web species predator/prey relation
metabolic network organic compound metabolyte/product relation
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Emergent properties

Why study a complex system as a whole? Why not break it into parts?

Predictability

In a complex system, important properties of the whole may be difficult to
predict from the properties of the parts, or even from significant subsets of
the parts. They arise from complex interactions of the parts (Especially
true of biological and social systems).

Modules

Sometimes the correct analysis of the system into functionally meaningful
parts (modules) requires careful analysis of global properties (e.g.,
community finding algorithms in social networks).
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Food web example

Killing seals

In the late 1990s, local Canadian fishing communities began killing seals in
an attempt to bring back the cod population.
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David Lavigne’s Predator/prey interactions

Lavigne (1996)
MARINE MAMMALS AND FISHERIES: THE ROLE OF SCIENCE IN THE CULLING DEBATE

39

So, when proponents of culling whales suggest that these ani-
mals eat huge amounts of marine life, the actual numbers they
provide are virtually meaningless. They do not tell us how much
commercially important fish is actually eaten by whales. They
tell us nothing about the effects of culling whales on the future
abundance of commercially important fish stocks and catches
that might be obtained from them. And, they obscure the fact
that the major predators of commercially important fish are not
marine mammals, but other fish (e.g. Young 2000). 

The view that fewer marine mammals would mean more fish in
the ocean, and more fish for human consumption is often said
to be based on ‘common sense’. According to that particular
‘common sense’, a reduction of whale stocks would ‘release’ mil-
lions of tonnes of fish to fill the nets of fishers for years to come.
In reality, such a view is based implicitly on an overly simple
model of the world, where the oceans contain only two groups
of animals: marine mammals and fish (Figure 2a). Since marine
mammals eat fish, then fewer marine mammals must mean
more fish for humans (Figure 2b).

Scientists have informed this particular debate by pointing out
that an equally ‘common sense’ argument tells us that in those
situations where a marine mammal eats the predators or com-
petitors of commercially important fish (Figure 3a), then fewer
whales would actually mean fewer fish for fishermen (Figure
3b). Adding just one more component to the system changes the
predicted outcome of a whale cull (Butterworth et al. 1988;
Lavigne 1996).

Empirical evidence supports this possibility. In terrestrial sys-
tems, for example, the removal of top predators may sometimes
result in an increase in smaller predators, a process termed meso-
predator release (Soulé et al. 1988). As a result, levels of preda-
tion may actually increase and have a negative effect on prey

populations, including those ‘of human economic concern’
(Palomares et al. 1995). 

Regardless, both of the above ‘common sense’ scenarios are
overly simplistic. Ocean ecosystems have many more than two
or three components. When one looks at even a simplified food
web for the Northwest Atlantic (Figure 4), for example, it
becomes obvious that predicting the outcome of a whale cull
based on either ‘common sense’ argument would be foolish.
Feeding relationships in the oceans are complex (see Yodzis
2001a, for another example) and it is extremely difficult to pre-
dict what the effect would be of reducing one component, such
as whales, on the rest of the system.

As early as 1981, scientists participating in a meeting of the
Northwest Atlantic Fisheries Organization (NAFO) concluded
that the effects of increasing or decreasing the size of a seal pop-
ulation on fish stocks and fishery yields was unknown. In other
words, the effects of seals on fish stocks and fishery yields was not
sufficiently well understood at the time to offer a scientific opin-
ion on the likely outcome of a seal cull. More than ten years later,
Canadian government scientist, Dr Don Bowen (1992) would
reiterate much the same conclusion, regarding harp seals
(Pagophilus groenlandicus) in the Northwest Atlantic. ‘We do
not know’, he noted, ‘what the effects of a change in seal num-
bers would have on commercial fisheries’. Several years later, an
international scientific workshop on interactions between harp
seals and fisheries in the Northwest Atlantic (Anonymous 1997)
would come to a similar conclusion. ‘It is not yet possible’, the
report notes, ‘to predict the effects of an increase or a decrease
in the size of the harp seal population on other ecosystem com-
ponents, including commercially exploited fish populations, or
on the yields obtained from them’ (Anonymous 1997, p 28).

Figure 2 A simple, two-component model of marine ecosystems, 
where marine mammals eat commercially important fish (upper). A 
reduction in the number of marine mammals can only result in more 
fish for fishermen (lower). Figure 3 A simple, three-component model of marine ecosystems, 

where marine mammals eat the predators (or competitors) of a 
commercially important fish (upper). A reduction in the number of 
marine mammals results in fewer fish for fishermen (lower).
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Lavigne (1996) North Atlantic food web
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Yodzis (1994) study survey

Remove predator of species A

Effects are unpredictable. In
some cases, Species A
populations went up; in some
cases, they went down.

Complications (reprised)

a. Predator of Species A may also be
a predator of another predator of
Species A.

b. Predator of Species A may also
be predator some competitor of of
Species A
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Social links

We seek social ties that help explain social dynamics or divisions (e.g., efficiencies in resource flow or patterns of conflict)

Tie type Sample elicitation Comments

Role-based relations (e.g., friend;
kin; teachers; sexual partner)

Please name all the people in Hartford
that you consider a friend

Respondents may have different defini-
tions of “friends”

Interactions (e.g., communicating
with; going to movies with)

Who are the people you have talked to
about health-related matters at the gym
over the last two weeks?.

Respondents more accurate answering
questions about who they usually talk to
than who they talked to during a given
period

Affective ties (e.g., like; dislike) Who are the people in your office that
you feel particularly close to?

Respondent is the sole authority on their
feelings

Exchanges & Flows (e.g., help
around the house; borrow from)

Who are the people who helped you by
giving financial aid after the storm?

Respondents typically feel these are easy
questions to answer

Cognitive ties (e.g., is an acquain-
tance of, know what they eat for
breakfast)

You’ve been in here a month now. Who
have you met?

Responses can be voluminous if not well
circumscribed

Adapted from Analyzing Social Networks Borgatti et al. (2013)

Jean Mark Gawron Linguistics 572San Diego State University



Introduction Definitions Random graphs Small worlds Power law networks References

Practical goals of network analysis

1 Find/eliminate/exploit structures that promote efficient transmission
of effects through the network

1 Market analysis
2 Epidemiology
3 Ecology (keystone species)

2 Find/eliminate/exploit weaknesses in the network
1 Network failure analysis (internet, power grid)
2 Analysis of the effect of infrastructure failure on economic productivity
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Keystone species

As was described by Dr. Robert Paine in his classic 1966 paper,
some sea stars (e.g., Pisaster ochraceus) may prey on sea
urchins, mussels, and other shellfish that have no other natural
predators. If the sea star is removed from the ecosystem, the
mussel population explodes uncontrollably, driving out most
other species, while the urchin population annihilates coral reefs.

Wikipedia, “Keystone species”
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The mathematical object

Points Lines
vertices edges, arcs Math
nodes links, edges Computer Science
sites bonds Physics
actors ties, relations Sociology
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Shortest path

4 paths connecting A and D

1. D E A
2. D E B A
3. D E C A
4. D E C B A
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Degree distribution

Node Degree

A 3
B 3
C 3
D 1
E 4
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Clustering coefficient

For a node n, a measure of how likely two nodes are to be neighbors given
they are neighbors of n. In a friendship network: how likely two people are
to know each other, given they are n’s friends. For a graph G, a measure
of how tightly knit the communities are.

Definition for a node n

The ratio of the number of links connecting ns neighbors to each other to
the maximum possible number of such links.

Definition for a Graph

The average clustering coefficient of nodes in G.
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Why random graphs?

1 General approach to complexity: Characterize the properties that
create order.

2 Real world networks fall somewhere between random and the
crystalline order of the above hexagon network.

3 Erdos and Renyi (1959). A series of papers 1959-1968.

4 How do social networks differ from randomness and crystalline order?

Jean Mark Gawron Linguistics 572San Diego State University



Introduction Definitions Random graphs Small worlds Power law networks References

A random graph
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Key properties of random graphs

Property Value Shared with social networks?

Average Path Length Low Yes
Clustering Coefficient Low No
Giant component? True Yes
Degree distribution Normal No

Note: The average path length is the average length of the shortest
path between nodes in the graph

Critical point (link with percolation theory): Giant component netlogo
demo
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The degree distribution of a random graph
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A power law degree distribution

The average value
is not the peak of
the distribution.
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Power law distributions (Newman 2005)

a) Words in Moby Dick (Zipf’s
Law)

b) Citations for scientific papers
c) Web site hits
d) Bestseller sales
e) Calls per day (AT&T)
f) Earthquake magnitudes
g) Moon crater diameters
h) Solar flare intensity
i) Battle deaths per war
j) Aggregate net worth in dollars

of the rich (Pareto’s Law)
k) Family name frequency
l) U.S. city populations
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Milgram (1967)

The experiment

In 1967, Stanley Milgram of Harvard University conducted the following
experiment. He asked 300 people chosen at random to send a letter
through friends to a stockbroker near Boston we will call the *target*. If
they had never met the target, they were asked to pass the letter, along
with the instructions, on to a friend whom they felt might be ”closer to”
the target.

The result

A whopping 64 of the original 300 letters arrived safely. The average
length of the recipient chain for those 64 letters was 5.5 persons.
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Six degrees of separation

Playwright John Guare coined the term six degrees of separa-
tion for this new conception of how linked together we all are
in the modern world.
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Watts and Strogatz

W&S definition of a small world network

A network with a short average path length and a high clustering
coefficient is called a small world. Watts and Strogatz (1998)

p = 0 Increasing randomness
===============⇒ p = 1.0

Watts & Strogratz Netlogo demo
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Small world networks

C. elegans

1. Actor collaboration network
2. U.S. power grid
3. Neural network of C. elegans
4. Condensed matter physicist collaborations
5. The internet (either as physical connections or as hyperlinks)
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The neural network of C. elegans

Watts and Strogatz (1998)
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Properties of movie actors network

Movie actors Random graph (p = .1)

Size 225,226
Average degree 61
Average path length 3.65
Clustering coefficient 0.79

225,000
22,500
1.7
.1

Jean Mark Gawron Linguistics 572San Diego State University



Introduction Definitions Random graphs Small worlds Power law networks References

The strength of weak ties (Granovetter 1973)

Did you get your job through a friend?

1) Getting a job
2) Starting a new business
3) Finding a mate
4) Learning new information
5) Spreading a social innovation, such as

a new kind of technology, or a political
movement.
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Preferential attachment: Rich get richer (Barabási and
Albert 1999)

1 Start with a network with two
connected nodes

2 Add nodes

3 Attach a new node n to an
existing node e according to the
following rule: The more
”popular” e is, the more likely it is
that n connects to e.

pi =
di∑
j dj

NetLogo Preferential Attachment
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Power law degree distribution

P(k) ∝ k−γ

P(k) is the proportion of nodes
having some given degree k .
P(k) is proportional to k raised
to some negative exponent γ
(typically 2 < γ < 3).

So P(k) falls rapidly as k grows.
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Scale-free graphs: Small worlds?

Networks generated by the Barabási-Albert procedure are small worlds, but
not all small worlds are scale-free.

Power law Non power law

Actor collaboration network C. elegans neural network
U. S. Power grid
Physicist collaborations
Internet

In a scale-free distrubution, we expect most nodes to have few links, but
we also look for a few nodes with many links. For example, in the actor’s
collaboration network, 41% of the actors have fewer than 10 links, John
Carradine has 4000 links. Robert Mitchum has 2905. Scuh extreme
outliers are extremely improbable in a normal distribution.
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The key feature of power law networks: Hubs

The hubs are what enable the network to have low average path langth,
while maintaining a high clustering coefficient.

Jean Mark Gawron Linguistics 572San Diego State University



Introduction Definitions Random graphs Small worlds Power law networks References

References I

Barabási, Albert-László, and Réka Albert. 1999.
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