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Python tutorials

1 Older version of Python tutorial, better for beginners Actually written
by Guido van Rossum.

2 Current Python docs tutorial
3 Google’s Python class
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http://docs.python.org/release/1.5.1p1/tut/contents.html
http://docs.python.org/2/tutorial/index.html
https://developers.google.com/edu/python
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Numbers

>>> X = 3
>>> X
3
>>> type(3)
<class 'int'>
>>> type(X)
<class 'int'>
>>> X = 1.2
>>> type(1.2)
<class 'float'>
>>> type(X)
<class 'float'>
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Type casting

>>> (X, Y) = (3, 1.2)
>>> Z = 3 + 1.2
>>> type(X), type(Y)
(<class 'int'>, <class 'float'>)
>>> type(Z)
<class 'float'>
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Python type hierarchy

Python number types
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Complex numbers

>>> type(0j)
<class 'complex'>
>>> 0 == 0j
True
>>> X = 3j+2
>>> type(X)
<class 'complex'>
>>> from numpy import log
>>> log(-1 + 0j) # Works for complex number
3.141592653589793j
>>> log(-1) # Fails for real number
nan
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String literals

>>> X = "frog"
>>> type(X)
<class 'str'>
>>> Y = 'frog'
>>> type(Y)
<class 'str'>
>>> X == Y
True

When entering string literals, delimiters (’ ’ or “ “ or """ """) are necessary.
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String literals with quotes marks

>>> X = "The big dog laughed and said, 'Hello, Jeremy.'"
>>> Y = 'The big dog laughed and said, "Hello, Jeremy."'
>>> X == Y
False

Jean Mark Gawron Linguistics 572San Diego State University 8 / 13



Numbers Strings

Multiline strings

>>> X = """
... Beautiful is better than ugly.
... Explicit is better than implicit.
... Simple is better than complex.
... Complex is better than complicated.
... """
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Special characters in strings

>>> Z = "x\ty"
>>> print(Z)
x y
>>> X = "\n Beautiful is better than ugly.\n Explicit is better than implicit.\n Simple is betterthan complex.\n Complex is better than complicated."
>>> print(X)

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is betterthan complex.
Complex is better than complicated.

\t tab
\n new line
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Concatenating strings

>>> X = "The dog"
>>> Y = " barked"
>>> X + Y # X + Y is a new string
'The dog barked'
>>> X # X unchanged
'The dog'
>>> Y # Y unchanged; strings are immutable
' barked'
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Casting limitations

>>> X = "The dog"
>>> Y = 3
>>> X + Y
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: can only concatenate str (not "int") to str

Jean Mark Gawron Linguistics 572San Diego State University 12 / 13



Numbers Strings

Takeaways

1 All python data has a type
2 In these slides we looked at two data types: numbers and strings
3 Builtin python operations (like “+”) work only on certain types
4 The result of every python operation has to have a type, and when the

opearyion has arguments of different types, python has to chose a type
for the result. This is called casting.
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