
Numbers Strings

Python Types I: Numbers and strings

Jean Mark Gawron

Linguistics 572
San Diego State University

September 2, 2020

Jean Mark Gawron Linguistics 572San Diego State University 1 / 13



Numbers Strings

Python tutorials

1 Older version of Python tutorial, better for beginners Actually written
by Guido van Rossum.

2 Current Python docs tutorial
3 Google’s Python class

Jean Mark Gawron Linguistics 572San Diego State University 2 / 13

http://docs.python.org/release/1.5.1p1/tut/contents.html
http://docs.python.org/2/tutorial/index.html
https://developers.google.com/edu/python


Numbers Strings

Numbers

>>> X = 3
>>> X
3
>>> type(3)
<class 'int'>
>>> type(X)
<class 'int'>
>>> X = 1.2
>>> type(1.2)
<class 'float'>
>>> type(X)
<class 'float'>

Jean Mark Gawron Linguistics 572San Diego State University 3 / 13



Numbers Strings

Type casting

>>> (X, Y) = (3, 1.2)
>>> Z = 3 + 1.2
>>> type(X), type(Y)
(<class 'int'>, <class 'float'>)
>>> type(Z)
<class 'float'>

Jean Mark Gawron Linguistics 572San Diego State University 4 / 13



Numbers Strings

Python type hierarchy

Python number types

Jean Mark Gawron Linguistics 572San Diego State University 5 / 13



Numbers Strings

Complex numbers

>>> type(0j)
<class 'complex'>
>>> 0 == 0j
True
>>> X = 3j+2
>>> type(X)
<class 'complex'>
>>> from numpy import log
>>> log(-1 + 0j) # Works for complex number
3.141592653589793j
>>> log(-1) # Fails for real number
nan

Jean Mark Gawron Linguistics 572San Diego State University 6 / 13



Numbers Strings

String literals

>>> X = "frog"
>>> type(X)
<class 'str'>
>>> Y = 'frog'
>>> type(Y)
<class 'str'>
>>> X == Y
True

When entering string literals, delimiters (’ ’ or “ “ or """ """) are necessary.

Jean Mark Gawron Linguistics 572San Diego State University 7 / 13



Numbers Strings

String literals with quotes marks

>>> X = "The big dog laughed and said, 'Hello, Jeremy.'"
>>> Y = 'The big dog laughed and said, "Hello, Jeremy."'
>>> X == Y
False

Jean Mark Gawron Linguistics 572San Diego State University 8 / 13



Numbers Strings

Multiline strings

>>> X = """
... Beautiful is better than ugly.
... Explicit is better than implicit.
... Simple is better than complex.
... Complex is better than complicated.
... """

Jean Mark Gawron Linguistics 572San Diego State University 9 / 13



Numbers Strings

Special characters in strings

>>> Z = "x\ty"
>>> print(Z)
x y
>>> X = "\n Beautiful is better than ugly.\n Explicit is better than implicit.\n Simple is betterthan complex.\n Complex is better than complicated."
>>> print(X)

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is betterthan complex.
Complex is better than complicated.

\t tab
\n new line

Jean Mark Gawron Linguistics 572San Diego State University 10 / 13



Numbers Strings

Concatenating strings

>>> X = "The dog"
>>> Y = " barked"
>>> X + Y # X + Y is a new string
'The dog barked'
>>> X # X unchanged
'The dog'
>>> Y # Y unchanged; strings are immutable
' barked'

Jean Mark Gawron Linguistics 572San Diego State University 11 / 13



Numbers Strings

Casting limitations

>>> X = "The dog"
>>> Y = 3
>>> X + Y
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: can only concatenate str (not "int") to str

Jean Mark Gawron Linguistics 572San Diego State University 12 / 13



Numbers Strings

Takeaways

1 All python data has a type
2 In these slides we looked at two data types: numbers and strings
3 Builtin python operations (like “+”) work only on certain types
4 The result of every python operation has to have a type, and when the

opearyion has arguments of different types, python has to chose a type
for the result. This is called casting.

Jean Mark Gawron Linguistics 572San Diego State University 13 / 13


	Numbers
	Strings

